
AD-'ill 481 PARKE MATHEMATICAL LAOS INC CARLISLE .MASS FIG 9/5
TOPICS IN OPTICAL MATERIALS AND DEVICE RESEARCH - 11. VOLUME 1I-fETCW~JAN 82 T' B BARRETT, H HASKEL. C E RYAN F19628-78-C-0OSG

UNCLASSIFIED RADC-TR-81-372-VOL-2 ML

1.0 825

1 .125 I1.

A , t,1 A AN j.

RADC-TR-81-372, Vol 11 (of two)
Final Technical Report
January 1982

TOPICS IN OPTICAL MATERIALS
AND DEVICE RESEARCH - II
Parke Mathematical Laboratories

T. B. Barre" DTJC
H. Haskel C:T!~C. E. Ryan

R. v. wood MAR 2 1982
S. P. Yukon H

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

*1 Griffiss Air Force Base, New York 13441

Da

1f

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-372, Vol II (of two) has been reviewed and is approved for

publication. t
APPROVED: /.'

CARL PIVNA
Proj ec1 lngineer

APPROVED:

Acting Director
Solid State Sciences Division

FOR THE COMMANDER. ~.~ 2r 2~
JOHN P. HUSS
.-'..ting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by yourorganization,
please notify RADC.(ESO) Hanscom AFB MA 01731. This will assist .us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE i'"oi UsIa Eftered) _________________

REPORT DOCUMENTATION PAGE BFRED COMPLETINORM
1. REPOR NUMBER2. GOVT ACCESSION NO0. 1. RE9CIP1IENT'S CATALOG 4NMBER

4. TITLE (dad SWiI~J* S CVEpRED

TOPICS IN OPTICAL MATERIALS AND DEVICE 1 Apr 78 - 30 Sep 80
RESEARCH - II $. PERFORMING Od4O. REPORT NUMBER

____ ___ ____ ___ ___ ____ ___ ____ ___ ___ N/A

7. AUTNOR(b) S. CONTRACT 3A GRANT NUMBtRi)

T. B. Barrett R. V. Wood
H. Haskel S. P. Yukon F19628-78--C-0089
C. E. Ryan________ ____

S. PERFORMING ORGANIZATION NAME AND AO0ORESS 10. PROGRAM ELEMENT7. PROJECT. TASK
AREA A WORK UNIT NUMBERS

Parke Mathematical Laboratories 62702F
1 River Road 46001927
Carlisle MA 01741

11. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT OATE

Deputy for Electronic Technology (RADC/ESO) January 1982
Hanscom AFB MA 0173~1 13. NUMBER or PAGES"

192
14. MONITORING AGENCY NAME & ACORSS(1I diIleveot hro C~fofntrl Office) IS. SECURITY CLASS. (of thos report)

Same UNCLASSIFIED
P~a OECLASSIFICATION/OOWNGORAGING

-AN/A SNOULE

IS. OISTRI11UTION STATEMENT (of tise po")

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of Cho. astrt en tered in Block 20. It diffant ffom Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Carl A. Pitha (ESO)

tS. Key WORDS (Gagging. on reers aid* of "oeecewy aid Identify be block Iwbanti

Fiber-Optics Optical Time-Domain Reflectometry Nicolet
Optical Waveguide Computer
Wavelength Multiplexing Silicon Optil- ate Generator
CCD Silicon Nitride IEEE-46o
Crystal-Growth Mechanism Silicon Dioxide Z-80

AUS'TRACY (Conlit,.. an reverse side it necessary OWd identily by block lUNtOr)L -A new analysis of fiber-optic wavelength multiplexing was developed.
-A study of the limitations imposed by mqterials quality on CCDIrs was
carried out.

*The S102-Si interface and its problems were investigated.
*Epitaxial growth mechanism for silicon, silicon nitride, and silicon
dioxide vere studied.
A theory was developed to describe time-domain reflectometry return,-

DD ' ,N 1473 torTioN OF I Nov6 Its OBSOLETE UCASFE
SECURITY CLASSIFICATION OF TIlS PAGE (Whem Dee. Sntered)

UNCLASSIFIED
SCCUPIrY CLAUIVICATIOM OF ?NSS PAGCOMh= "aa &Patfed)

signals.

UNCLASSIFIED
SICUI l CLASSPICAlION OF b.~~~'~ me ., £io.d)

Foreword

This report is the second part of a two-part Final Report for
Contract P19628-78-C-0089. Part I is entitled "Topics in Optical
Materials and Device Research - II".

-.. --- ------------------ -

LIZ.- "n,

7 l pl.rI ' . .. ,-

" ii

TABLE OF CONTENTS

Preface 1

Introduction 2

SECTION I - SYSTEM LOGIC 3

Introductory Comments 3

The NIC "Chips"
As seen from NIC 5
As seen from the Z-80 7
Protocol 10

NIC-> Z-80 11
Z-80-> NIC 12

The 8291-set 14
Introductory Comments 14
System Description 16

Ports 17
Registers

State Set 18
State Observe 20

Memory 22

Interaction with the Z-80 27
General Observations 27
Register Protocol 28

Direct 28
Timed 28
Indirect 29
Event 30
Special 31

8291-set Operation 31
GPIB Review 31
Overview 34
"Request for Service" Walk-through 34

State Diagram Viewpoint 35
8291 State Viewpoint 37
Comments 44

SECTION II - CTL SOFTWARE (The Operating System) 47

V -EcEDIMG PAM SANE-NOT F1MM

I.q -. 1

SECTION III- NIC SOFTWARE 49

Overview 49
Software Segments 50

SEGI (MAIN) 50
CAMERA MAIN 50

Mode 1 50
Mode 2 52
Mode 3 52
Mode 4 53
Mode 5 53
Mode 6 54
Mode 7 55
Mode 8 55

COMI ,COM2 ,COM4 ,COM5 ,COM6 56
Miscellaneous Subroutines 57

SEG2 (ERMON) 57
SEG3 (IOSUB) 58
SEG4 (PACK) 58
SEG5 (TEKX) 59
SEG6 (MISCL) 59

References 61

FIGURES:
Figure 1. - CTL System Block Diagram 4
Figure 2. - Intra-Set Configuration 15
Figure 3. - Interface Function Diagram 33

TABLES:
Table 1. - NIC - CTL Instruction Set 6
Table 2. - CTRLO Register 8
Table 3. - The CTRLI Register 9
Table 4. - The action of NIC and Z-80 instruc-

tions on various "control" bits 10
Table 5. - 8291-set Status Bit Table 24
Table 6. - NIC/CTL Command Table 51

APPENDICES:
Appendix A - CTL Hardware 63

(a) Schematic 64
(b) Component Layout 66
(c) Wire-Run List 67

Appendix B - CTL Software 74
Appendix C - NIC Software 112
Appendix D - The Tektronix "WHEX" File 177
Appendix E - Using the CTL with the Hewlet-

Packard 9825A Calculator 181

vi

Preface (to part II)

The design, construction and software/firmware "implementation"
of the IEEE-488 interface device described in this report is the
result of labors of several people.

The basic design and layout were.done by Dan Terpstra, Florida
State University, Tallahassee, Florida and Dave Wright, Univer-
sity of Illinois, Urbana, Illinois. The current PROM program was
also provided by Dan Terpstra. Construction of the device was
done by Larry Armour of A.J. Lincoln & Co., Inc.. Some design
modifications and most of the initial debugging was done by
George Bartley of AJL&Co.

We gratefully acknowledge the help of these people in this
project. We also wish to acknowledge the help of Mark Ahles,
Nicolet Instrument Corp., Madison, Wisconsin who came to our
rescue when the Nicolet computer failed and who provided the
initial contact with Dan Terpstra and Dave Wright.

i1

I2);I

-t

INTRODUCTION

The NIC-488/CTL (referred to simply as CTL or the CTL) bridges
the rather large gap between the Nicolet 1080 computer (and its
relatives referred to simply as NIC) and the IEEE-488 (GPIB) bus.
The system consisting of NIC-CTL-GPIB is a system of 4 computers:
the Nicolet itself, the CTL which actually consists of two micro-
computers and the computer which is assumed to be attached to the
other end of the GPIB cable. This is an interesting and rather
complex system which can, and should, be looked at from several
angles in order to fully understand the operation of the overall
system. This report provides the following views:

1) The hardware - a brief look at NIC as it pertains to attach-
ment to CTL and the CTL hardware itself. Note that the GPIB
is partly a set of definitions and state diagrams and partly
some hardware (electrical and mechanical) specifications.
From a hardware standpoint, we only include a diagram of the
bus-socket pins (which, of course, is standard). Most of this
information is contained in the Appendices.

2) System logic - i.e., a description of how the system works.
This is done in steps and with varying detail by looking at
the NIC/CTL interface and the CTL/GPIB interface separately
since they are well isolated logically.

3) System software - there are basically 2 levels of software to
be described: the "operating system" software and the "appli-
cation software".

The above plus various appendices, diagrams and tables should pro-
vide the reader of this report with sufficient information to
successfully operate and modify the system for applications other
than for which it was designed. Additional details can be found
in the references.

2

K5 4-

SECTION 1 - SYSTEM LOGIC

Introductory Comments

The purpose of the CTL is, of course, to allow the NIC to talk to
other computers and/or "intelligent" instruments using the GPIB
standards. Thus through CTL, NIC can become a controller/talker/
listener and, potentially at least, can partake in and control
all of the interface functions which collectively define the
GPIB. The word "potentially" is used since the current operating
system is designed to support only some portions of some of the
interface functions. In particular, it is complete in so far as
its ability to talk to and control the Hamamatsu C1000 GPIB
interface M999-04.

The purpose of this section is to describe, what can be best
called, the system logic. As has been mentioned elsewhere, CTL
itself actually consists of two microcomputers: a Z-80 with
associated memory and firmware (or software) and the Intel chips
set consisting of one 8291, one 8292 and two 8293 LSI chips
(referred to as the 8291-set). The 8292 is actually an 8800 uP
with onboard RAM and ROM which has been programmed (by Intel) to
perform a specific set of functions. The 8291 is a special pur-
pose LSI chip which acts like a small computer while the 8293
provides for the electrical interface between the bus and the
other chips, along with a small amount of hardwired logic.

Thus data and control flow is from NIC to Z-80 to 8291-set to the
bus and whatever is on the other end of the bus. Loosely speak-
ing, NIC initiates all actions in the rest of the system; is the
ultimate source of all device dependent data used for control pur-
poses (specifically here, this means camera control data); and is
the ultimate sink of all device dependent data from other talkers
on the bus. The Z-80 is used mainly to monitor the activities of
the 8291-set, to pass data between NIC and the 8291-set. The
8291-set provides for all of the GPIB interface functions and, in
particular, passes device dependent data between the Z-80 and the
bus.

In what follows, the CTL is described in terms of the NIC "chip",
the Z-80 set and the 8291-set where, loosely speaking, the NIC
"chip" consists of the onboard discrete logic which performs the
digital function transformations from the instruction lines (BIR,
IOP, etc.) to the onboard operations, and the latches and I/O
ports associated with data transfer between NIC and CTL. The
Z-80 set consists of the Z-80 uP and associated memory while the
8291-set contains the 8291, 8292, (2) 8293 plus a port for obser-
ving the task complete, TCI, interrupt (so it can be used as a
flag rather than an interrupt). The following simplified logic

diagram (Figure 1.) pertains to this system as it is described
below.

3

- i

GPIR

Note:

NIC BIR RESET 26
SANIC INt 16 Z-80 uP 8291

NIC IOP##-N NMI 17
WAIT 24 AND SoT

NIC ICP
"IC[IP" MEMORY

NIC SKIP

NIC BAC

NIC SAC D/A/C r) D/A/C

Note:

BAC = buffered accumulator (8 bit data out -from NIC).

SAC = set accumulator (9 bit data in - into NIC).

BIR = buffered instruction register (5 bit data from NIC

instruction register).
IOP# = IOP1, IOP2, IOP3 - input/output pulse (approximately

1 usec apart).

IOP = input/output - (0 signifies an i/o instruction).
SKIP = skip next instruction (used to indicate external

device is not ready).

Figure I. - CTL System Block Diagram

4

*N1

Since the Z-80 set is well documented elsewhere (see ref. 1), it
is not described here except in so far as it interacts with the
other two main blocks of the system.

The NIC "chip" as seen from NIC

Looking at the NIC "chip" from the NIC computer, there is the
following:

1) An 8-bit input port (address 40H) which allows data to be fed
from NIC to CTL via the 8 lowest order BAC lines. (Thus, only
the 8 lowest order bits in ACC may be transferred to CTL.)

2) A 9-bit output port (address 40H) which allows data to be fed
from CTL to NIC via the 9 lowest order SAC lines. The 8
lowest order bits represents data coming from the Z-80 uP
while the 9th bit can be set (or reset) by the Z-80 through a
control register described below. This bit is called the
"service" (SRVC) bit.

3) A 9-bit "command" port through which i/o instructions from the
NIC may be decoded. The commands are fed from the NIC instruc-
tion register to CTL via the BIR(3-7) lines, IOPI, IOP2, IOP3,
and IOP. See Table 1 for the list of instructions, the accep-
ted mnemonics and a summary of their use.

These lines are used as follows:

BIR4-7 and IOP - device select (select NIC "chip").
BIR3 and IOPI,2,3 - provide 8 commands to the NIC "chip".

IOPI, 2 and 3 act as read or write
pulses. They are sent I micro-second
apart during the time NIC is ready to
send or receive data.

4) A SKIP output. When SKIP is set, instructions which have the
skip bit set (e.g., CTLSK) will skip the next instruction.
Thus a typical instruction sequence is:

CTLSK / TEST SKIP
JMP $-i / TEST AGAIN IF NOT SET
CTLRDC / READ THE DATA

5

1 iP 0_ 1 1CP as D 1 i5 i1l IT
inst. inst.
mnst. (octal) use

C 1 1 0 - , 0 1 -1- 4 .

CTLCF' 0 0 I 0 1 1 0 1 -4062 iCLPAR

CTLRDC~j I 1 44066fREAD, CMr,

I SRVC, CLEAR

1.1S 00 001 10 1 6061 SKIP ON DONE

Y ~ + 4072 RESETr

C TLRD0--RClears ACC and reads 9 bit data from the "chip" into ACC.
(IOPI is the RD palse. The 9th bit is "service".)

CTCF
Clears BUSY/DONE flaqs. (Using the IOP2 pulse.)

CTLRDC
Logical OR of CTLRD and CTLCF. Used for normal read since
clearing the flags indicates that the data port is ready to
receive more data from the Z-80.

CTLWR
Sends 8 bit data from ACC to the chip, sets BUSY and clears
DONE. (Uses the IOP3 pulse.)

CTLSK
Loads the state of the DONE latch (does not change it) onto
the SKIP line. If set, the next NIC instruction is skipped.

CTLRS
Reset: clears CTRLO latches (see below), clear BUSY and
DONE, reset pulse to 8291-set and 2-80.

Table 1. - NIC - CTL Instruction Set

6

The NIC "chip" as seen from the Z-80

Looking at the NIC "chip" from the Z-80 uP, there is the
following:

1) NICP (address 40H) - the 8 bit data i/o port for transfering
data from the NIC chip to and from the Z-80. Input data to
this port is put on the 8 lowest order SAC lines to the NIC
while data from the BAC lines are fed to this port for output
to the Z-80. In addition, a write to NICP sets the DONE latch
and resets the BUSY latch.

2) CTRLO (address 80H) - a 4-bit register (bits 0-3) which may be
written to in order to set or reset various latches within the
NIC "chip". This register is diagramed and described in Table
2 (note that it is shown as an 8-bit register with 4 "don't
care" bits denoted by X).

3) CTRLI (address 80H) - an 8 bit status register which may be
monitored by the Z-80 to determine the state of the NIC
"chip". See Table 3.

4) WAIT "pin" - this "pin" is attached to the Z-80 7TE pin and
is used to put the Z-80 into a wait state. See DNEWT and
DMAWT.

5) BUSY "pin" - this "pin" is attached to the Tni- pin of the
Z-80. When BUSY is set, then VUJY is active low causing a
Z-80 interrupt if Z-80 interrupt has been software enabled.

6) INT "pin" - this "pin" is attached to the interrupt pin of the
8291 and as such is used merely to monitor the status of the
8291 interrupt output.

7) RESET "pin" - this "pin" is attached to the Z-80 reset input
and when active low causes the Z-80 to be reset. It is also
attached to reset of the 8291-set (actually 8292 reset).

8) RESET "pin" - this "pin" is attached to the reset pin of the
8291-set (actually the reset input of the 8291).

9) SYC "pin" - this "pin" is attached to the 8291-set system
control (SYC) input. It actually goes to the first switch in
the DIP set which includes the address switches. When this
switch (switch I in the DIP set) is off, the CTL is the GPIB
controller in charge of the bus.

10) I/O control input "pins" - IORQ, RD, WP input attached to the
corresponding Z-80 system control output pins.

7

X X IX IDMAWT X DNECLJ SRVC JDNE;

DMAWT - When set, the WAIT pin on the NIC "chip" is sent
(DMA-WAIT) active low unless the DREQ input to the "chip" is

active high. Since WAIT is connected to the Z-80
wait input and DREQ is connected to the 8291 DREQ
output, setting DMAWT enables the transfer of data
between the 8291 and the Z-80 memory in a "DMA
mode". This is described in more detail in the
section on the 8291-set.

DMAWT is reset by outputting bit 4=0 to the CTRLO
register or by the CTLRS command from NIC.

DNECL -This bit is used to reset (clear) the DONE latch
(DONE CLEAR) (see below). This reset occurs whenever a write to

CTRLO is done with DNECL=l.

SRVC - The state of the "service" line (the 9th bit) to
(SERVICE) NIC is determined by this bit. It is latched to 1

as long as SRVC is 1 and to 0 otherwise.

DNEWT - When set, the WAIT pin on the NIC "chip" is sent
(DONE WAIT) active low as long as DONE is set. Since WAIT is

connected to the Z-80 wait input, this means that
the Z-80 is in a wait state as long as DONE is
latched on (set). It is taken out of this wait
state (DONE is reset) by issuing a CTLCF, CTLRDC,
CTLWR or CTLRS.

DNEWT can be reset by writing to CTRLO with DNEWT=O
or by issuing a CTLRS from NIC.

Table 2. - CTRLO Register

8

, " " 1-..I -

INT IBUSY] DONE IAD4 IAD3 I AD2 IADi ADO

INT - Status of the 8291 interrupt line. Set to 1 when the
8291 is issuing an interrupt recuest to the Z-80.

BUSY - Status of the BUSY latch. (1 means BUSY is set.)

DONE - Status of the DONE latch. (I means DONE is set.)

AD4-ADO - Status of the 5 address switches in the NIC "chip".
These switches can be used to set the CTL talker-
listener primary address if desired. Switch on is a
logic 0.

Table 3. - The CTRLI Register

9

11u1~7i

Protocol

The main function of the NIC *chip" is to provide for the asyn-
chronous flow of data in bit parallel, byte serial form between
NIC and the Z-80.
This is accomplished mainly through the use of the BUSY and DONE
latches. Table 4 summarizes how these latches (and others) are
influenced by actions of NIC and of the Z-80 uP. Below are some
examples of typical software segments which can be used to imple-
ment this asynchronous communications. First, however, we note
how NIC and Z-80, respectively, observe and control these two
latches:

DOZE BUSY 8291 DNEWT SRVC ONECL OMAWT NzCP Z86
CTRLI CTRLI CTRLI CTRL C TRW I CTRWO CTRLO INT
bit 5 bi. i bit 7 bit 0 bit 1 1 bit 2 tit 4

CTLRD [READ READ

CTLCF CLEAR CLEAR CLEAR

CTLRIX CLEAR CLEAR READ READ CLEAR

CTLWR CLEAR S [WRITE SET

CTLSK TO

CTLRS CLEAR ICLEAR OFP OF OFF OFF CLEAR

OUT (48) ,A SET CLEAR WRITE CLEAR

OUT (88) ,b2Zl CLEAR _

OUT (88) ,ba1l SET

OUT (88) ,bl*8 CLEAR

OUT (89) ,b4-1 LATCH TO
8291 OREQ

OUT (8) ,b4ag I _N -

OUT (88),bfal LATCH TODONE

D IMcON- 1
OUT (80) ,b- 4,iEO V7
IN AI(M8) REAO READ READ i _
IN A, (40) 7. READ

Table 4. - The action of NIC and Z-88 instructions
on various "control" bits.

10

-'~~~~ ~~~~~ ~~~~ ~~ ~~~~; .,. ..; .. %,.,-. --.. &.l.,.,...

BUSY - set by NIC with CTLWR
reset by NIC with CTLCF, CTLRDC, CTLRS

-eset by Z-80 with OUT (40) ,A
Tadby Z-80 with IN A, (80)

DONE - set by Z-80 with OUT (40),A
reset by Z-80 with OUT (89),A (bit 2-1)
re-set by NIC with CTLWR, CTLRDC, CTLCF, CTLRST
read by NIC with CTLSK (causes an instruction skip if

DONE is set)

NIC -> 3-80

Consider the transfer of two data bytes from NIC to the Z-80.
Assume that initially both DONE and BUSY are reset and that the
Z-80 is waiting in a 1'~op for data from NIC.

t1 BUSY set with CTLWR (first
''I data byte from ACC ready)

DONE t 2 DONE set and BUSY reset
with OUT (40) ,A (first data
byte in the Z-80)

BUSY t3 BUSY set and DONE cleared
I Iwith CTLWR (second data

t1 t2 t3 t4 t5 byte from ACC ready)

t4 DONE set and BUSY reset
with OUT (40),A (second
byte in the Z-80)

t5 DONE reset with CTLCF.

The following code implements the above sequence.

N IC CTL

MTOM COUNT /set counter LD C,40H
NEXT, MEMA @POINT /to -2 LD 8,2

CTLWR ;LD A,DNEWT
CTLSK ;OUT (801) ,A
imp #-I CTl IN A,(80H)
MPON POINT BIT BUSY,A
JMP NEXT JR Z,CTl
CTLCF CT2 INI

OUT (4011),A
DJNZ CTl ; (Or CT2 if DNEW' set
;XOR A
;OUT (8011),A

Another way of implementing the transfer of data from NIC to CTL,
particularly if large blocks of data are to be sent, is to set
the DNEWT bit which in turn ties the Z-80 WAIT pin to the DONE
latch. Since DONE is cleared at the same time as BUSY is set by
the CTLWR instruction, it is possible to jump to CT2 without
checking for BUSY (except for the first byte). This variant is
indicated by commented instructions in the CTL program.

Z-80 -> NIC

Next consider the transfer of two data bytes from the Z-80 to the
NIC. Again it is assumed that initially both DONE and BUSY are
reset. Now, however, NIC is waiting in a loop for the Z-80 to
start sending the data.

tl DONE set with OUT (40),A
(first data byte from Z-80

DONE is ready).
I I I i

I I t2 DONE reset with CTLRDC.

(first data byte into ACC).

BUSY t3 DONE set with OUT (40),A

I I ,(second data byte from Z-80
t I t2 t3 t4 is ready).

t4 DONE reset with CTLRDC

(second byte into ACC).

As in the previous case, it is possible to simplify the Z-80 code
by using DNEWT. The code below shows this without and with DNEWT
set.

NIC CTL (without DNEWT)

MTOM COUNT LD C, 40H
NEXT, CTLSK /wait for next LD B,2

JMP #-l /byte CT IN A, (80H) ;wait for last
CTLRDC /read & reset DONE BIT DONE ;byte to "clear"
ACCM @POINT JR NZ,CT1
MPOM POINT OUTI

MPOMZ COUNT DJNZ CT
JMP NEXT

CTL (with DNEWT)*

LD C,40H
LD 8,2
ED A,DNEWT
OUTI ;send first data byte
OUT (80H),A ;set DNEWT
OTIR ;send next data byte
XOR A ;reset DNEWT

OUT (801) ,A

12

*Note that DNEWT cannot be set until the first byte is sent out
since otherwise nothing will get transferred.

DONE is normally used (set) to indicate that the Z-80 is ready (a
byte has been sent or received). It can be used otherwise how-
ever, since the Z-80 can both set and reset DONE. (Reset is
accomplished with OUT (80H),A with bit 2 set to 1.)

The SRVC status bit (bit 1 of CTRLO) can be used to indicate a
special condition within the CTL (caused, for example, by an
abnormal condition of the GPIB). This status bit is read by NIC
as the 9th bit in ACC after reading the NIC I/O port (40H).

The use of the other latch bit, DMAWT, is discussed further in a
later section after the 8291-set has been described.

13

8291-set

Introductory Comments

The 8291-set consists of the following:

Intel 8291 GPIB Talker/Listener
Intel 8292 GPIB Controller
2 Intel 8293 GPIB Transceivers
A Status Port
Associated circuitry and minor hardware to tie every-
thing together.

The intra-set configuration is V : in Figure 2.

14

- . . ,, . .. •1 .'

L: lab-

It R~

Fiur 2. ntaSe Cnfguato

___________ 15-

This set provides for the complex transfer of data between the
Z-80 uP and the GPIB. It essentially implements all of the
interface functions as specified in the IEEE 488-GPIB standards.
The 8291-set is best comprehended by "observing" its performance,
in conjunction with the controlling uP, while carrying out a
typical GPIB task. By extrapolation it should then be a rela-
tively simple procedure to use the 8291-set for any legitimate
GPIB task. This performance observation (or task walk-through)
is set forth rather exhaustively in the sub-section on "reauest
for service" walk-through. There are several sub-sections lead-
ing up to this walk-through which serve both for reference and
for description of the 8291-set. The reader is advised to merely
glance through the sections on system description and interaction
with the uP and to concentrate more on the operation sections.

System Description

in the following system description the various ports and regis-
ters of the 8291-set are described. In addition, some detail is
given on how these ports, and registers may be used and certain
precautions which must be made in accessing them (timing consi-
derations, etc.). Before doing so, several points should be
made.

(1) The 8291 may be used alone as a talker/listener. Here,
however, since the CTL has GPIB controller capabilities
with the help of the 8292, we prefer to look at the chip
set as a single entity although parenthetically note is
made of which port or register, etc. is associated with
which chip. The 8293's are passive devices with little
onboard "intelligence", i.e., they act mainly as an
electrical interface as opposed to a "logical" interface.

(2) Both the 8291 and 8292 have "hidden" or "indirect" regis-
ters which may not be interfaced directly (with a simple IN
(port) or OUT (port)). We choose to label them by the bit
patterns used to access them, as well as by the names
chosen for them by Intel.

(3) Although Intel uses the term "register" for all of the
"doors and windows" used for data transfer and status obser-
vation, we choose to classify them as ports, registers and
memory according to primary usage. The term "register" is
used below with a capital R when we wish to talk of the
ports, registers and memory collectively. Thus ports are
used primarily to transfer random data or specific command
data between the Z-80 uP and the 8291-set; registers are
primarily used to indicate the status (or state) of the
8291-set or the GPIB while memory is used primarily to hold
configuration bytes within the 8291-set, i.e., to configure

16

the 8291-set with various multi bit pieces of information.
Note that some Registers are multi-purpose but are listed
under only one category.

Below, all Registers are listed with the following infor-
mation:

name - usually as assigned by Intel.
function - a brief description of the function of

the Register.
abbreviation
symbol - for use with Table 5 which describes

the purpose of all single bits.
(n) - where n=l indicates 8291 Register and

n=2 indicates 8292 Register.
protocol
symbol - see the section on Register protocol.
contents with
bit labels - the single bit contents are described

in Table 5.
multi-bit des-
cription - (for example, data byte)

ports

Data-in - moves data from the GPIB to the Z-80.

DI (1) TIM1

D17 D16 1DI5 D14 1D13 1D12 IDIlI DI1

DIO -> D17 is datum.

Data-out - moves data from the Z-80 to the GPIB.

DO (1) TIM2

D07 D06 D I D04 D03 ID02 I DOI I DOo

DO0 -> D07 is datum.

Command 2a-throuh - passes "undefined" multi-line interface
messages and secondary addresses from the GPIB to the
Z-80 set.

CP (1) EVl (CPT)

17

'r - ,

|r-4--

CPT7 CPT6 CPT5 CPT4 TC CP2 CPT1 CPT0

CPT0 -> CPT7 is "command" datum.

Auxiliary mode - passes "mode data" and "commands" from the Z-80
set to the 8291-set (specifically to the 8291). This
is a multi-purpose register.

AM (1) DIR

CNT2 iCNTl CNTO COM4 ICOM3 COM2 I COMI 1COMO]

COMO -> COM4 is internal command datum.
CNTO -> CNT2 is register control datum.

Command field - passes commands from the Z-80 set to the 8291-set
(specifically to the 8292).

CF (2) TIM3

1 1 1. OP [C 3 1C2 ICl ICO

CO -> C3 is internal or external command datum.

Address 0I - passes addresses and address "function" bits to the
8291-set. (This data is stored in the memory "regis-
ters" Address 0 or Address 1. Bit RS,DT,DL are state
SET BITS.)

A01 (1) DIR

ARS I DT I DL I AD5 I AD4 I AD3 I AD2 I ADI 1

ADI -> AD5 is address datum.

registers (state set)

Interrupt enable 1 - enable interrupts.

IEl (1) DIR

CPT APT I GET END I DEC I ERR I BO I BI

Interru2t enable 2 - enable interrupts.

IE2 (1) DIR

[0 10 IDMAO IDMAI_ SPASC, LLOC IREMC JADSCI

18

. ,~~~....... '. .. -....,.

Serial 2011 mode - enable request service (also holds serial poll

status bits).

SP (1) SPECI

I8 rSv 6 I55 I54 IS3 I52 ISi

Sl -S> 6 plus S8 is serial poll status datum.

Address mode - selects addressing mode.

AM (1) DIR

TO I LO 1 0 0 10 0 ADM DM

ADMO -> ADMI is address mode datum.

Auxiliary register A - selects handshake and EOS modes.

AA (1) IDIRl (Auxiliary mode)

X IX X IA 4 I A3 JA,2 IA1 A0]

AO -> A 4 is state-set datum.

Auxiliary register B - select special features.

AB (1) IDIRI (Auxiliary mode)

XIX X X I X B3 B IB2 1

BO -> B 3 is state-set datum.

Auxiliary register P - set parallel protocol and action.

AP (1) IDIRI (Auxiliary mode)

x. X x Ix -u Is- P3 Jp2 IpI1

P1 -> P3 are parallel poll "address" datum.

Interru2t mask - enable interrupts.

IM (2) DIR

1 SPI TCI I .SYC _fOBFI IBFI 0 SQ

1*I 19

i~

Error mask - enable error interrupts.

EM (2) DIR

Interru2t acknowledge reset certain interrupt status bits.

IA (2) IDIR2

sYc ER SRQ EV 1 iFCR 1 1 1

registers (state observe)

Interrupt status 1 - (corresponds to Interrupt enable 1. Note
that status bits are set regardless of which
interrupts are masked.)

IS1 (1) DIR

APT TEND DEc ERR BO I

Interrupt status 2 - (bits 0 to 3 correspond to Interrupt enable
2.)

IS2 (1) DIR

]fIIThS I LLOJREM] J PSCJLLOC RE MC JADSC

Serial poil status - (corresponds to Serial poll mode.)

SP (1) EV2

J RCS 6[s5 4-3 LS2-S1

Address status -monitors address state and EOI.

AS (1) DIR

Ft -nllo, I ILPASl T ,-1LA ITA IJMN

InterrgPt st -controller, error, SRQ, etc. status.

IS (2) DIR (SPI reset by IDIR2)

SY RRS~ V X IFCR I BF O78F

SPI

20

Error flag (E4) - (corresponds to Error mask.)

EF (2) IDIR4

X IX IUSER IX TX TOUT 3 ITOUT 2 ITOUT1]

Controller status (E6) - controller function state.

CS (2) IDIR4

GPIB status (E7) - bus status.

GS (2) IDIR4

REN DAV EOI X ISYC IIFC IATNI SRQ 1

Event counter status (E3) - contains current value of the event

counter.

ES (2) IDIR4

D7 ID6 ID5 JD4_D 2D DO

DO -> D7 is datum.

Time out status (E9) - contains current value of the time out

counter.

TS (2) IDIR4

D7 ID6 ID5 D4 ID3 ID2 IDl DO

DO -> D7 is datum.

TCI status - more interrupt status flags. Used mainly to observe

TCI.

TCS (2) DIR

0 0 10 1DREQ I BFI IOBF I SPI TCI

(Note that this is an "external" register not part of
the 8292 and is provided mainly to provide TCI status.)

21

memory

EOS - hold an EOS byte.

EO (1) DIR

EC7 EC6 EC5EC4EC3 IEC2 ECi ECO

ECO -> EC7 is datum.

Address 0 - holds device primary address (mode 2) or device
"major" address (mode 1). (Note that this memory
register also holds the disable talker/listener bits
passed by the Address 0/1 port.)

AO (1) IDIRI (Address mode)

X OTO OLO AD5-I AD4-0AD- A2- Al-

ADI-0 -> AD5-0 is address datum.

Address 1 - holds device secondary address (mode 2) or device

"minor" address (mode 1).

Al (1) IDIRl (Address mode)

X I DTl I DLlI AD5-1 AD4-1 AD3-1 AD2-1 I ADl-I

AD1-1 -> AD5-I is address datum.

Event counter (E2) - holds count down from value for the event

counter.

EC (2) IDIR3

0D7 D6 ID5 ID4 ID3 D2 Dl IDO]

DO -> D7 is datum.

Time-out (El) - holds time to be used (count down from) for the

various time out errors (TOUT 1,2,3).

TO (2) IDIR3

D7 ,D6 DS ID4 ID3 ID2 IDl:EDO

DO -> D7 is datum.

22

- |,

Summarizing the Register "structure" of the 8291-set, there are:

6 ports which may be used to pass commands to the 8291-
set or data to and from the 8291-set.

10 state set registers.

11 status (observe) registers (note 1)

5 memory Registers.

Note 1: There is a total of 54 status bits which may be
observed to determine the state of the 89-set and its
associated GPIB. It should be noted that some of the status
registers are used to hold multi-bit data (e.g., the serial
poll register) in addition to status bits; this multi-bit
data is not counted as status. It also should be noted that
some of this status information is redundant.

23

* - . - ~ ~ - - - |-. - . -

U(lb

r- C CtyC

S CULL 4-U

*- 0 wt .- .. ~ w b U.- . 4

) , I b III U Q

U) ~ -n a;--0 w

UV (DM C C C -

41

2 U
U t

4, t lb -4

0~1 c

tn-~ .. - E - L- -

lb~1 ..- C-M(1 -

U lb ~ 0.~ C' ~4-4, 4, t , t A 44 '- l > ~ - (
- - >c C

QU 4, Er

0 - 9 m - I- 1 - .- 1 1 S :
10 a) c . -UU wt 41

Q,01

U. E C5 l0 .

0 -4

44, is 1 . 1 R.

4, 4, ~E D - M -2- - - -

A AA*AA AAAAA A A A A A A A A A A A A A ^ A A
(9 ~ I (I I I 8 ((II I t ((1, 11 11 Ui (I 8 (

9
(E 8 8 I if

424

WNb

IjM O

4141
.w0

mn Cte L

41 ~1 U)
41 1. 4). r

CA

fn -) 4 "

C-

C 0 I) - r

0 CI 4 0 4, 1.
134x 0 w -

CL '2 ,-

C *- 6- IC m 2 C

- 6- to

01 .0 4 -U. C ,

U U CU

C C C >

0 -8 4 U)je 1

414 41E

A- A.-4. A A10 A~ A A A~f4.I 4 A I .

b ~ ~ ~ ~ V C-j 412 Er '-I w0 0. C S - I)~. 4 W W l O

Tabe -. 8211 e Sttu Bi Tal Ucniud

- 77-

CO,

UT

.1 d

0..10

4 4

w Cj ChE m f n
40 (- Cn C4 N

*0 1
C., 4.

Wn . 4 , WED j

U) Eni~
C E) 4 m U

C 40> 2 4

go ED owl

Is C3 ~- ' E. 1 L 4 j

~4)40@) 0~E

TL- - - n - 4 Ct (J

F, aA 4

6r 0~

to, IN ED R. e

Tabl 5. 821 3et 0V SttsBi ale(otiud

26 -

Interaction with the Z-80

The 8291-set is obviously a complex device and many of its fea-
tures are not used by the CTL. ror example, the 8291-set has
several interrupts which can be used but in CTL no interruots are
used, rather, status bits are observed and appropriate action
taken. Thus, in what follows, the description cf the interaction
between the Z-80-set and 8291-set is based on what is actually
done within the CTL which in turn is partly based on the parti-
cular application fo which the CTL was constructed.

This description is based on information in reference 2 and, in
particular, the Data sheet section on the 8291 and 8292 and the
Application Notes section "Using the 8292 GPIB Controller".

General observations

1) Many of the Registers are indirect ones, i.e., are not acces-
sible by a single read or write (IN or OUT in Z-80 memories).
For example, the majority of the 8292 status registers are
read using "utility commands" which in turn require the
checking of status bits while being used to get the desired
status bits. In other words, a certain protocol is required.
The first section describes the different protocols used along
with some timing consideration which must be observed.

2) The Z-80 "sees" the GPIB only via the 8291-set. Within this
set, the 8291 itself is used to implement all of the Interface
Functions (as specified in the IEEE-488 standards) with the
exception of the C (Controller) Interface Function (CIF).
Moreover, the 8291 is used to handle all multi line messages
even for messages which are to be used only by the CIF. Thus,
the "logic" of the 8291-set reflects this division of labor
and the commands sent from the Z-80 set to the 8291-set must
be such that the 8291 is put in the right state relative to
the 8292. In other words, there is a subtle interplay between
Interface states (as defined by the standard) and the actual
states of the 8291 and 8292.

3) While the 8291-set has been designed to implement all of the
Interface Functions, the user often has the choice of having
the Z-80 set do much of the work. Within CTL the Z-80 set
acts only as the source and sink of some of the local messages
(and thus controls the overall sequence of events on the bus)
and lets the 8291-set do all of the actual interfacing. Of
course, the Z-80 set must also take approriate action under
various bus error conditions.

27

Register protocol

As mentioned above, various Register observe different protocols
in their accessibility. We classify these protocols as direct
(DIR), timed (TIM), indirect (IDIR) and special (SPEC).

Direct

These Registers receive or return information after a single IN
or OUT instruction of the Z-80. Most of the 8291 status and
state registers can be read or written directly. The 8292
Interrupt Status, Interrupt Mask and Error Mask Registers are
also direct.

Timed

Several of the Registers require varying amounts of time to
elapse before the data in or out is valid or before a command has
been executed. There are 3 sub-categories of time Registers,
classified according to the status bits which must be observed
for successful completion.

TIM1

These Registers use the BI status bit of the Interrupt status,
register. When BI is set, data in a TIM1 register is valid.
The BI status bit is reset after a read of the Interrupt
status 1 register, a read of the TIM1 register or by a pon
local message.

TIM2

These Registers use the BO status bit of the Interrupt status
1 register. When BO is set the corresponding Register is
ready to output more data. The BO status bit is reset after a
read of the Interrupt status 1 register, a write to the TIM2
register, by the assertion of ATN or by TACS. (Note that in
tne CTL configuration the 8291 never sees ATN.)

Note:

The TIM1 and TIM2 Registers are used to receive and send,
respectively, multi-line messages on the GPIB. If, for some
reason, the devices on the bus do not respond correctly (e.g.,
are not turned on or are not attached), then the status bits
will never be set.

28

!

TIM3

These Registers use the IBF bit of the Interrupt status reqis-
ter. When this bit is set, the TIM3 Register is not ready to
receive data from the Z-80 set. It is reset whenever the 8292
has accepted data sent to it from the Z-80. It is also reset
by either an external reset (e.g., CTLRS), pin local message
or by the RST command. The standard procedure for TIM3
registers is to first wait until IBF is reset, write to the
Register (usually part of accessing an indirect register) and
then wait for IBF to reset.

Note that there is no corresponding Register for output which
uses the OBF bit since output from the 8292 is via the indirect
registers which require the use of the TCI status bit.

Indirect

The indirect registers require more than a simple read/write or
read/write and wait for a status bit. They require the use of an
auxiliary register and in some cases a completion siqnal. There
are 4 sub-categories-of indirect registers depending on the
actual code used to access them.

IDIRI

This is the simplest type of indirect Register. It is only
necessary to write to the "intermediate" register. For exam-
ple, the Address 0 and Address 1 registers are written to via
the Address mode register. Auxiliary register A, Auxiliary
register B and Auxiliary register P are written to via the
Auxiliary mode register. No status bits are checked.

IDIR2

The IDIR2 Registers are those which use IACK (interrupt acknow-
ledge command) to "write" to them (actually reset interrupts)
via the Command field register. The status bit used is SPI in
the TCI status register to indicate that the SPI status bits
have been reset. These (Special Interrupt) bits are SYC, ERR,
SRQ, EV and IFCR in the Interrupt status register. It should
be noted, however, that if the interrupt conditions (any of
them) persist, that SPI will be set again after a short period
of time. Also note that the IACK command itself is given via
the Command field register which is a TIM3 type register.

29

p

IDIR3

These registers are the indirect write-to registers of the
3292 anO include the Event counter (E2) and Time out (El)
memory Registers. These are written to by first writing E2 or
E4 via the Command field register and immediately writing the
desired data to the indirect register. Note that it is not
necessary to check IBF between these two writes, only after
the last one.

The Command field register has the address-0 line (A0) set to
1 while all the indirect registers are written to or read with
A0 =0. It is somewhat a question of semantics as to whether
one should consider that a "Data field" (in/out) register is
used to pass data to the indirect registers or whether they
are read or written "directly" after the appropriate command
has been given. Here the latter interpretation is chosen.

IDIR4

These are the indirect read registers of the 8292 utilizing
utility commands E3 to E9. They differ from the IDIR3 regis-
ters in two respects. One (obvious) is that data is read from
them. The second is that the TCI status bit of the TCI status
register must be observed to indicate that the desired regis-
ter is ready to be read. TCI is also used to indicate comple-
tion of various "direct" commands by the 8292. It is very
important to observe that TCI does not reset immediately on
issuing a command so that usually a wait loop must be inserted
to observe the reset of TCI before another loop can be entered
to observe the set of TCI.

Event

The event Registers are those which contain valid data only on
the occurrence of events which are signaled by setting of various
event status bits. These are usually "special" events associated
with GPIB interface functions and which usually occur rather
infrequently. They are classified according to the actual event
(and status bit) associated with them.

EVl

The Command pass-through register contains a valid undefined
multi-line interface message (ATN must be set) whenever the
CPT status bit of the Interrupt status 1 register is set
(Command pass-through must first have been enabled by writing
the appropriate command to the Auxiliary B register). This
status bit, along with all others in the Interrupt status 1
register, is reset when read.

30J

EV2

The Serial poll status register contains the serial poll
status byte (actually bits SI-S6 and S8) as written into the
Serial poll mode register. (See SPECI, below.) The SRQS bit
is used to indicate the status of a serial poll by the
controller-in-charge. The SRQS bit is set whien the 8291
Service request interface function is in the Service Request
State (SRQS). Entry to this state is initialized by writing
to the Serial poll mode register with the rsv bit set. The
SRQS bit is reset when the controller-in-charge does a serial
poll and reads the status byte in the serial poll status reois-
ter.

Special

Special Registers are those which reouire a special protocol for
setting rr clearing bits.

SPECI

The Serial poll mode register may be written directly with the
rsv bit set. This is equivalent to sending the local message
request service". This bit should be reset by writing to the
serial poll mode register with rsv=0 immediately after the
serial poll status byte has been read by the controller-in-
charge (as indicated by SRQS - see EV2 above).

8291-set operation

In the previous section the 8291-set was described in terms of
the various Registers whhich are accessible to the Z-80 set and
which may be used to provide most of the interface functions for
the bus. In this section, the 8291-set is described from an
operation standpoint, i.e., how it implements various interface
functions and its relationship to the Z-80 set while providing
this implementation.

Actually we trace through, in some detail, what is involved in
answering a request for service from another device (in this case
the Hamamatsu camera). In doing so, we get involved in many of
the interface functions which make up the complete GPIB system.

GPIB review

1) The GPIB is a set of mechanical, electrical and :-erational
specifications which, when properly implemented, provide for
asynchronous transfer of information (messages) amonq several

31

, . , . -,'

devices (with GPIB interfaces) at data rates up to one million
bytes/second. Electro-mechanically the bus consists of 16
data and control lines (8 data and 8 control) plus grounds and
shield. The control lines provide, amonq other things, for
"handshaking" of messages in such a manner that in a multi-
listener configuration (there can be many "listeners" but only
one "talker" active at the same time), the data transfer rate
is adjusted down to the slowest listener. In addition to data
transport, the interface provides for various control func-
tions such as remote/locate switch, device trigqer, device
polling (serial and parallel), etc. These functions are des-
cribed in detail in most of the literature on the GPIB and, in
particular, in the standard. See reference (3).

2) In order to comprehend the structure of the GPIB it has been
functionally partitioned into ten interface functions (perhaps
eleven if a distinction is made between the Control Function
and the System Control Function). GPIB overall operation is
described by several state diagrams wherein each interface
function has associated with it one or more (three is the maxi-
mum) connected state diagrams. Each such connected state dia-
gram consists of two or more mutually exclusive states (repre-
sented by labeled circles) and connections showing how the
transition from one state to another is made. (These are
illustrated later in much detail for a particular bus opera-
tion (service of a reauest for service)). These state dia-
grams can, if one so desires, be translated into a set of
timing diagrams for bus and "local" signals. However, since
in particular, the 8291-set takes care of most of the bus
timing, it is much easier to work completely with the state
diagrams.

3) Each interface function can be diagramed as a box (see Fiqure
3) , representing the function, with a set of message inputs
and outputs (Interface messages) and connections to the other
interface functions such that their states may be observed.
(Interface functions are interdependent in general.) The
input messages always change the state of the interface func-
tion. These messages are classifed as local, i.e., between
the device containing the interface and the interface itself
and remote for messages between the interface and the bus (to
other devices). The device itself (as opposed to the inter-
face) is usually described by a set of device functions so
local messages are between device functions and interface
functions. Roughly speaking, at least from an operational
standpoint, the Z-80 set represents the device function(s) and
the 8291-set, the interface functions.

32

Remote messages consist of interface messages (they chanqe the
state of an interface function) and device dependent messaqes
(data to be passed among various devices on the bus). qhe inter-
face messages are also partitioned into six classes which indi-
cate their usage and also into uni-line and multi-line messaaes.
(All device dependent messages are multi-line.)

All remote messages are coded by 3 caoital letters in the dia-
grams (e.g., ATN for attention) - some are input, some outn~it and
some both. Local messages, on the other hand, are coded by 3
uncapitalized letters (e.g., pon for power on). There are no
local messages from an interface function to a device function,
only from device to interface. Thus, in particular, device
dependent data (e.g., DAB for data byte) goes "directly" between
device functions. Similarly, addresses go "directly" between
devices although they are "enabled" by the Controller function.

Local messages (abc)

Interface state
information Interface

(to and from
other Interface Function
functions) -

Interface messaqes (ABC)

bus

Figure 3. - Interface Function Diagram

There are certain points about messages that are useful to
remember.

(1) All messages intercepted by (input to) Interface functions
serve to change the state of the function provided a state
transition is permitted (by the state of other Interface
functions).

33

(2) Local messaqes are defined oni' from device function(s) to
Interface functions. However, the Interface function must
often "notify" the device function of some event. These
"messages" are not defined by the standard.

(3) All remote interface messages received are intercepted by
one or more Interface functions and serve to change the
state of the intercepting function(s).

(4) All remote, coded (multi-line) interface messages sent from
a device originates in a device function not an interface
function. However, such remote messages must go via (be
enabled by) some interface function - most commonly the
Controller function.

Overview

Roughly speaking, the Z-80 set represents the device functions
and is the source of Local messages and the sink for device
dependent Interface messages. The 8291-set represents all of the
interface functions and, among other things, interprets and takes
action on all non-device dependent Interface messages. (Excep-
tions to this blanket statement should become obvious in the
following discussion.) Thus, the coding of the Z-80 does not
have to include much of the bus "protocol". As noted earlier,
the 8291-set consists of the 8291, 8292 and two 8293's and inter-
connections such that as a unit it provides for all interface
functions including proper logical leads on the bus. The 8291 by
itself provides for all interface functions except Control (and
System Control). More exactly, all Interface states exclusive of
those associated with Control aid System Control are associated
with the 8291 and the remaindef with the 8292. It must be noted,
however, that the 8291 and 8292 do not operate independently of
one another. In particular, all multi-line messages from the
device (Z-80 set) go via the 8291 and the 8292.

Request for Service

With this introduction, we describe a response (of the CTL) to a
request for service. The strategy is to look at the appropriate
Interface function immediately affected by the reauest, then
other Interface functions whose states affect the immediate one,
the various actions required by the 8291-set to cause various
state transitions and, finally, how these actions are made to
happen by appropriate instructions from the Z-80 set.

34

State diagram viewpoint

(For clarity, all states associated with the camera have sub-
script r (remote), while those of the CTL have subscript 1
(local). Thus, we refer to local and remote Interface functions
referring to the CTL (or 8291-set) and the camera, respectively.
Since there is only one controller -- that associated with CTL --
no subscript is used for the control interface function.]

Briefly, a request for service is initiated by a devi,.w (the
camera in this instance) sending the local message, rsvr (request
service) to its Service request SRr Interface function causinq it
to go from the NPRSr state (Negative Poll Response) to the SRQSr
state (Service Request State). It should go to this state pro-
vided its Talker (Tr) Interface function is not in the SPASr
state (Serial Poll Active). The Tr function should not be in
this state but is later put there briefly during the serial poll
which is conducted in response to the request for service. While
in the SRQSr state, the camera SPr function sends the SRQ
message.

In response to SRQ, the local Control function makes the transi-
tion from the CSNS state (Controller Service Not Requested) to
the CSRS state (Controller Service Requested State). While in
this state (as long as SRQ is active) it notifies the device func-
tion of SRQ (say by sending the srq message).

Upon receiving srq, the local device function initiates a serial
poll (1) to find out what device is requesting service and (2)
why it is requesting service (by decoding a status message).
This is done by sending the talker address, MTA, of the camera
"via" the C function (assumed to be in the CACS state). Since
MTA is a multi-line message, it must be "handshaked" to the
remote devices. This is accomplished through use of the Source
Handshake function (SHI). As will become clear later, the local
Talker function T1 is used in this process although it is not
"officially" part of this data transfer. Thus, the local device
function makes the local Talker interface function take part in
this transfer by putting it into the TACS 1 state. (Note that if
many devices were connected to the bus, a set of addresses would
be sent to determine which one was requesting service. Moreover,
it might also be necessary to put other devices in a known state
before conducting the serial poll.)

Reception of MTAr causes the camera Talker Interface function
(Tr) to go from the TIDSr state (Talker Idle) to the TADSr state
(Talker addressed) with the help of the AHr (Acceptor handshake)
function.

35

i r

The local device function then sends the serial poll enable mes-
sage (SPE) via C which is still in the CACS state. This causes
the Tr function to go from the SPISr state (Serial Poll Idle) to
the SPMSr state (Serial Poll Mode).

Now the local device function sends the local message, gts (go to
standby) to C causing it to go from the CACS state to the CSBS
state as soon as the Source handshake (SHI) function attains the
appropriate stave. (Note that while the active controller is in
this state, device dependent messages may be sent - ATN is
false.)

The camera Tr function now goes from the TADSr state to the SPASr
state (Serial Poll Active) and remains there as long as ATN is
false. This, in turn, causes the S r function to go from the
SRQSr to the APRSr state (Affirmative Poll Response). (Note that
rsv r must be sent continuously from the camera device function to
SRr to keep SRr in the SRQSr state until Tr goes to the SPASr
state.) The camera device function should then stop sending SRQ
(more specifically, send it passively false). The Tr function
sends the RQS message (DIO line 7 = 1) along with a status byte
(DIO 1-6 and 8), the STB message, from the camera device func-
tion.

The local device function receives the RQS STB message via the
local Listen Interface function (LI) which has previously been
put into the LACS 1 state (Listen Active). (How this is done will
be demonstrated later.) The transfer of datum (the RQS STB mes-
sage) takes place when the local Acceptor Handshake (AHI) func-
tion goes to the ACDS1 state (Accept Data).

Note that at this point the camera is (or should be) still in the
SPASr, APRSr state and the local interface functions are in the
TACS 1 (somewhat artificially), LASS 1 states. In order to leave
these states and get back to inactive states, the Controller in
charge of the bus must send the ATN message. The Controller cur-
rently is in the CSBC (Standby) state. The local device function
now sends the local message, tcs (take control synchronously) to
C. Assuming that the RQS STB message has been successfully trans-
ferred, the AH 1 function should be in ANRS 1 state and C will go
to the CSHS state (Controller Standby Hold) state and then go to
the CSWS state (Controller Synchronous Wait) after a time delay
of at least 1.5 microseconds. When (and if) C goes to CSWS, it
sends the attention message ATN and after another "decay" state
falls back to CACS. If the local tcs message is de-asserted
while C is in the CSHS state, it falls back to the CSBS state.
This may happen, for example, if the AH1 function cannot go to
the ANRS 1 state (the handshake is "stuck"). If this happens, the
only way short of a pon (resetting everything) is to have the
local device issue the message tca (take control asynchronously)
with the possible loss of a data byte.

36

A

As soon as the ATN message is received, the remote Talker func-
tion Tr goes to the TADSr state (from SPASr). This, in turn,
allows the SRr function to go from the APRSr state to the NPRSr
state. (This is the SR "ground" state.)

Finally, the Tr function is put into its "ground" state by send-
ing the UNT (untalk) message. This is accomplished in the same
way as MTA was sent as described above.

From the above it is clear that all Interface functions with the
exception of Parallel Poll (PP), Remote/Local (RL), Device Clear
(DC) and Device Trigger (TR) are involved in a service request
and subsequent serial poll. In fact, these latter four Interface
functions are not implemented in the CTL since the camera does
not implement them. They are, however, easily implementable with
the 8291-set; it is mainly a matter of initiating the correct
messages within the Z-80 set.

8291 state viewpoint

In the above description of what takes place during a reouest for
service and serial poll, a description was given of the various
states the remote Interface function (associated with the camera)
must attain during the process along with remote device function

*messages. From the standpoint of CTL, of course, all that can be
ascertained about the remote device (the Interface function
states, device function states, etc.) is through observation of
various bus messages received and reaction to bus messages sent.
Thus, in what follows, the remote states are considered only in
so far as they can be "observed" via bus messages (probes). As a
matter of fact, the camera does not react according to the stan-
dards. For example, its SRr function does not go into the SRQSr
state (as observed by looking for the SRQ message) until the
Controller function C has gone to standby CSBS. Moreover, the
camera always has two RSQ messages to give rather than one.
Below we assume the ideal condition, i.e., the remote device or
devices adhere to the standards.

Having described the service request/serial poll sequence from
the state diagram viewpoint, we now describe it by looking at
corresponding states of the 8291-set and how these states are
intitiated either by the Z-80 instructions or information ob-
tained from the bus. It should be emphasized that there are
often alternative ways of using the 8291-set. In particular, as
mentioned earlier, the Z-80 can be interrupt driven. Here it is
"status bit driven", i.e., interrupts are not used at all.

Before going through the step by step sequence outlined above, it
is necessary to put the GPIB (local Interface functions and re-
mote Interface functions) into a known "ground" state. In addi-
tion, the 8291-set must be initialized in some manner such that

37

it too is in a known "ground" state in so far as its "ground"
state may include more than the ground state of its associated
Interface functions. For this purpose it is assumed that there
are no other devices on the bus with the Controller function.
(The CTL does have provisions for another device to have control
of the bus on power up but, in this condition, does not take part
in any bus transactions until its local Control function becomes
active. Thus it is possible to control the camera from other
devices such as the HP 9825 calculator and to then have this
device pass control to the CTL. One of the appendices describes
what is involved here.

This "ground" state is established first by pulsing the external
reset pin on both the 8291 and 8292 using the CTLRS instruction
of NIC. Among other things this has the effect of the local
message, pon (power on) putting all Interface functions into
their "ground" states. Thus, for the 6 Interface functions we
are concerned with:

Source Handshake (SH) => SIDS

Acceptor Handshake (AH) => AIDS

Talk (T) => TIDS (Note: The 8291-set is
SPIS not used as an extended

talker.)
Listen (L) => LIDS (Note: The 8291-set is

not used as an extended
listener.)

Control (C) => CIDS
CSNS

System Control (SC) => SIIS
SRIS
SNAS

Assuming that the SYC switch is on, SC goes from SNAS to SACS
(System Control Active), i.e., SYC "on" is equivalent to the
local message rsc (request system control). This in turn causes
the transition SIIS -> SIAS (the local message sic, send inter-
face clear, is built into the 8292) and the IFC (Interface Clear)
message is sent. At the same time (more or less), the C-function
ends up in CACS (Controller Active) and the ATN message is sent
(continuously). The IFC message is sent via an implied ABORT
command which takes 155 microseconds to complete.

External reset (by CTLRS) also causes the Z-80 to start execution
at 00. Thus, the initializtion subroutine starts here. The first
thing to be done is to wait for the ABORT command to finish execu-
tion. This can be done by using a DJNZ loop, i.e.,

LD B,0
LI DJNZ LI

as the first pair of instructions. (See note 1, below.)

38

Internally, the following Registers are reset (cleared)

Interrupt Status 1
Interrupt Status 2
Serial Poll Mode
Address Status (EOI bit only)
Auxiliary Register A
Auxiliary Register B
Auxiliary Register P (Parallel poll bit is reset)
Interrupt Status
Interrupt Mask (See note 1)
Error Flag
Error Mask
Time Out
Event Counter (disabled)

Note 1: Because the Interrupt Mask register is cleared, it is not
possible to use TCI to observe when the ABORT command has
been completed. This is the reason for using the DJNZ
loop instead.

After this external reset and ABORT, the following should be done
to put the 8291-set into the correct state for succeeding opera-
tions:

1) Set the TCI bit in the Interrupt Mask register.

INTMR EQU 1OH (The Interrupt Mask register is port
INTM EQU OAOH 1OH in the CTL)
LD A,INTM

OUT (INTMR),A

2) Preset the internal counter (in the 8291 to match the external
clock frequency) used to generate the T1 time delay for the SH
function. The frequency used in the CTL is 4 Mhz; the follow-
ing instructions are used:

CLKRT EQJ 24H
AUXMD EQU 25H (Auxiliary Mode register is oort 25H

LD A,CLKRT in CTL.)
OUT (AUXMD) ,A

3) Disable talker and listener at primary and secondary (or major
and minor) addresses.

ADR01 EQU 26H (Address 0/1 register is port 26H
DTDL1 EQU 60H in CTL.)
DTDL2 EQU 0EOH
LD A,DTDLI

OUT (ADR01),A
LD A,DTDL2

OUT (ADR01),A

39

4I <1I

4) Release the "initialization state". This is done with an
"immediate execute" pon.

XOR A
OUT (AUXMD) ,A

The current software in the CTL also includes provisions for
looking for "time out" errors for which a time value is inserted
in the Time Out register. For clarity this is ignored in the
following.

In addition to initializing the 8291-set, the CTLRS instruction
initializes the remote devices (in this case just the camera) to
their "ground state" through the IFC message. In addition to
setting the camera Interface function to ground, the IFC message
also causes the camera device function to reset. Specifically,
the camera Format and Control functions go to their default
values.

At this point the 8291-set is in "ground" state, except that it
is the System Controller and Controller in charge sitting in
state CACS, and waiting for the Service Request message to come
from the camera. (The fact that a previous command to the camera
from CTL caused the camera to initiate a video sweep is irrele-
vant here. We assume that the state of the 8291-set and bus is
as given.)

Note that in the CACS state, the Controller function is constant-
ly sending the ATN message. This should not affect the camera's
ability to transfer from (Service Request interface function)
NPRS to SRQS but, in fact, the camera will not make the transi-
tion while ATN is asserted. For simplicity we assume that it
adheres to the standard and will make the transition.

Wher the SRQ messae is received, the SRQ status bit in the
Interrupt Status register is set. The SRQ status bit on the GPIB
Status register is also set. It is looked for on the Interrupt
Status register in the followilg loop:

INTST EQU 11H (The Interrupt Status register
SRQ EQU 5 is port IH on CTL.)

L2 IN A,(INTST)
BIT SRQ,A
JR Z,L2

It should be noted that later this bit must be reset using the
interrupt acknowledge (IACK) command. However, the SRQ message
is sent until the camera's SR function goes to the APRS state as
a result of a serial poll initiated by CTL.

Lr|

Thus, the local Controller in effect sends the local sra messaqe
to the device function (the Z-80 set) which starts to initiate
the serial poll response. As noted earlier, the first steD is to
transfer the local Talk function to the TACS state. This is done
by sending the local message ton (talk only) which puts the
Talker to the TADS (Talker Addressed) state. However, since the
Talker (the 8291) does not see ATN (which is still beinq qent),
it goes without further instructions to the TACS state from which
it can transmit device messages. The local Source Handshake (SH)
function takes part in this message transfer but is transparent
to the user except for a status bit which says when the next
message can be sent to the 8291-set. The following code is used:

INTl EQU 21H (The Interrupt Status regis-
BOM EQU 2 ter is assigned port 21H
TON EQU 80H in CTL.)
DOUT EQU 20H (The Data Out register on CTL

is assigned port 20H.)
TALKP EQU 42H (The camera's primary talk

address. It does not use a
secondary address for serial
poll.)

LD A,TON
OUT (ADRMD),TON (Send local ton message.)
LD A,TALKP

OUT (DOUT),A (Send camera MTA)
L3 IN A,(INTl)

BIT BOM,A (Wait for the messaqe to be
JR Z,L3 handshaken out of the Data

Out reqister. This is
called WAITO (macro) below.)

Note:

The byte output status bit, BO, is set whenever the Talk
function is in TACS and the Source Handshake function is in
state SGNS (or SWNS). This means that it is ready to transfer
a multi-line message to the bus. By waiting here, the Data
Out register will be ready the next time a messaqe is to be
transmitted. The local message nba (new byte available) is
generated whenever a byte is placed in the Data Out register.

With the reception of its talk address, Tr goes to TADS and
awaits the SPE message. The followinq code sends out this
message:

SPE EQU 18H
LD A,SPE

OUT (DOUT),A
WAITO

41

The Tr function goes to SPMS allowing Tr to also go to SPAS as
soon as ATN is no longer asserted. The latter happens when C
goes to CSBS as follows:

CMD92 EQU 11H (The Command Field register is
assigned port IIH in CTL.)

GTSB EQU OF6H (This is the local gts message.)
PRTF EQU 08H (The TCI status register is

assigned port 8H in CTL.)
TCIF EQU 0 (The TCI status bit number is 0.)
LD A,GTSB (Send local message gts and wait

OUT (CMD92) ,A
L4 IN A, (PRTF) for it to be executed. See note

BIT TCIF,A below.)
JR NZ,L4

L5 IN A,(PRTF) Referred to as WAITX below.
BIT TCIF,A
JR Z,L5

Note:

Whenever an "operation command" is sent to the 8292, the TCI
(Task Complete Interrupt) is set upon completion of the
command (provided kt was masked on in the Interrupt Mask
register). It remains set until shortly after a new command
is sent, i.e., it takes 7tcy to reset. At 4 Mhz this is
equivalent to 26.25 microseconds. This is the reason for the
first loop.

The camera SR function can now enter the APRS state and the cam-
era device function can send the RQS STB message. The following
code is used to receive this message.

LON EQU 40H (The lon (listen only) local

message.)

BIM EQU 0
DIN EQU 20H (The Data in register is

assigned to oort 20H in CTL.)
LD A,LON (This sends the local lon mess-

OUT (ADRMD),A age causing the Listen function
to gc to the LADS (Listener
Addressed state).

XOR A (Sends the local pon (power on)
OUT (AUXMD),0 message causing all Interface

functions associated with the
8291 to go to "ground" state.
Note, however, that the lon mess-
age remains active so that the
Listen function goes back to
LADS. See note below.)

42

| •

L6 IN A, (INTI)
BIT BIM,A
JR Z,L6 Referred to as WAITI below.
IN A,(DIN)

Note:

When any message (in this case the RQS STB) has been "hand-
shaken through" the bus, the byte in (BI) status bit of the
Interrupt Status 1 register is set. It is reset upon being
read.

The camera must now be taken out of the SRr APRS state and Tr
SPAS, SPMS states. Briefly, this is done as follows:

(a) The Controller sends the ATN message causing Tr to go to
TADS.

(b) The local device function sends the message (via C), SPD
(Serial Poll Disable) which, when handshaken through,
causes the SPMS function to go to "ground state" SPIS.

(c) The camera should also go to the SRr "ground state" NPRS.
(Assuming the camera rsv message is no longer being sent.)

The coding is as follows:

TCSY EQU 0FDH (Take control synchronously
local message.)

SPD EQU 19H (Serial Poll Disable message.)
LD A,TCSY (Send tcs and wait for state

OUT (CMD92),A change. C goes to CACS via
WAITX CSHS, CSWS, CAWS.)

LD A,TON (Since the 8291 was previously
OUT (ADRMD),A "configured" to be a listener,
XOR A it must now be configured to
OUT (AUXMD),A be a talker. Note again the

LD A,SPD use of pon to establish the
OUT (DOUT),A correct "ground" state.)

WAITO

The next to last step is to bring the camera Tr function back to
ground state (TIDS) since it is still in the TADS state. This is
done by sending another talk address or equivalently the UNT mess-
age.

UNT EQU 5FH
LD AUNT

OUT (DOUT),A
WAITO

43

.... • , ,...a.,..L " .'- ._. _ . , - . , -,• - ___V u. _.

The last step is to "clean up" the 8291-set interrupt flags.
Specifically, the SRQ bit in the Interrupt Status register must
be reset via the IACK command.

IACK EQU OBH (This is the basic IACK command
configuration.)

SRQB EQU 20H (To be added to IACK to clear
SRQ.)

IBFBT EQU 1 (Input buffer full bit for the
Interrupt Status register.)

L7 IN A,(INTST) (Wait for any pending command
BIT IBFBT,A to the 8292 to clear the input
JR NZ,L7 buffer. This bit is reset
LD AIACK+SRQB when the buffer has been clear-

OUT (CMD92) ,A ed by the 8292. This step can
L8 IN A, (INTST) usually be omitted since a

BIT IBFBT,A check for TCI is always done.
JR NZ,L8 IBF should clear within 24 cy

90 microseconds at 4 Mhz.)

Note:

The last loop is to wait for the IACK command to clear. A TCI
is not generated unless the error (ERR) bit is set. The SPI
interrupt can also be checked for SRQ clear. See comments
below.

Comments

In the previous section we have painstakingly gone through the
relatively simple task of responding to a reauest for service.
In doing so some of the relationships between "states" of the
8291-set and those of the various Interface functions have been
at least implicitly described. As can be observed from the
complete list of Registers available, and the contents thereof,
there is much more to learn about the 8291-set. This can be done
by a careful reading of the Intel Peripheral Design Handbook.
Something should be stated about observation of bus errors
however. In the call sequence given above it was implicitly
assumed that everything went as planned. Since status polling
rather than interrupts are used, if something goes wrong, for
example, a message does not get handshaken through the bus, the
program will hang up in a loop. Several error conditions may be
checked for. These are discussed briefly below.

1) If the 8291 is in the talker active state (TACS) with a mess-
age to send and no listener is in the LACS state (the byte can
not be handshaken onto the bus), the ERR bit in the Interrupt
Status 1 register will be set.

44

2) There are various errors which are flagged by the 8292. These
errors are first of all observed by the error bit, ERR, in the
Interrupt Status register. The error type can then be deter-
mined by observing the contents of the Error Flag register as
follows:

USER - the local message sic (send interface clear) or sre
(send remote enable) is passed to the 8292 and it is
not the System Controller (in state SIIS, SRAS).

TOUT1 - this "time out" error is generated, afte'r a period
of time determined by the contents of the Time Out
register, when the local Controller function tries
to go from CIDS to CADS when the TCT message is
received from the bus and the current Controller in
charge has not stopped sendinq the ATN message.

TOUT2 -a time out error which is generated when the local
Controller goes to the CSBS state and the trans-
mission between the addressed talker and listener(s)
has not started.

TOUT3 -a time out error which occurs when the local
Controller function tries to go from the CSBS state
to the CSWS state (via CSHS) and does not do so
because AH does not go to the ANRS state (the
handshake is "stuck"). If this happens, an
alternative is to issue the tca (take control
asynchronously) local command which will force the
Controller to the CSWS state (with possible loss of
a data byte or, worse yet, a device message is
interpreted as an Interface message because ATN is
sent while a valid data byte is still on the bus.

The ERR "interrupt" in the Interrupt Status register is one mem-
ber of a set of interrupts which, when ORed together, constitute
an actual special interrupt (SPI). The following diagram is
pertinent.

45

S P I - Special Interrupt (on pin 33 of the 8292)

OR OR OR

ERR SYC SRQ EV IFCR - Observe an Interrupt Status

0 R OR OR

USER TOUT3 TOUT2 TOUTI - Observe an Error Flag register

The CTL makes a check for TOUT3 and does a tca if such an error
occurs. All other bus errors are taken care of by doing an
external reset (with CTLRS). Further comments on this are made
at the end of the section on Z-80 software.

46

SECTION II - CTL SOFTWARE

The CTL presently contains some preliminary software which

1) provides for sending data from CTL to one or more listeners
(they may have extended addresses).

2) provides for the reception of data from a talker (which may
have an extended address).

3) provides for the reception of a service reauest and subseouent
parallel poll. (This function has been specialized to account
for the idiosyncrasies of the Hamamatsu camera.)

4) provides for CTL to become controller in cli;4rqe from mnother
device previously in charge of the bus. Note that CTL cannot
take part in data transfers until it is the controller in
charge using the curr ent., software.

5) provides for the transfer" of data between CTL and NIC. With
the exception of a few instructions in PROM (which are always
executed on external reset), this code is contained within the
first 1K-bytes of RAM. It is transferred there from NIC with
the help of the resident PROM software. Eventually, this code
will be put into PROM (with a few modifications) after it has
been thoroughly checked.

In broad outline, this software operates as follows:

a) on reset the PROM software does some preliminary 8291-set
initialization, sets the stazk pointer to BFF and then
waits for a read-register, write-register or "boot" com-
mand from NIC. NIC sends this boot command and transfers
1K bytes of data (actually program) into locations 800H
to BFPH. The boot program then transfers control to
location 800H.

b) more initialization is done including an internal reset.
If the SYC switch is on, the CTL becomes the system con-
troller and controller in charge and sends out the IFC
message to clear other devices on the bus. Otherwise it
waits for TCL from the current Controller in charge of
the bus.

c) following initialization, the program goes into the main
i"command" loop. Within this loop a command table is re-
ceived from NIC. This is a table, twenty bytes in length,
containing parameters for each command to be executed.
The first item in the table is the number of the command
to be executed.

d) at present five commands are implemented as follows:

COMl Send data from CTL to the bus.
COM2 Receive data into CTL from the bus.
COM4 Re ,-ve service request and do serial poli.

47

COM5 Receive data into CTL from NIC. (Note that
this subroutine is also used to read in each
command table.)

COM6 Send data from CTL to NIC.

e) upon completion of each command, the command subroutine
returns via way of a pseudo-subroutine which sends a "com-
pletion" message to NIC. CTL and NIC are "synchronized"
by having access to the same command table which, among
other information, contains the total number of bytes to
be transferred from CTL to NIC and vice versa - assuming,
of course, that nothing goes wrong.

A complete annotated listing of the current CTL software is in-
cluded in Appendix B. It is largely a modification of software
appearing in reference (2).

48

4

SECTION III - NIC SOFTWARE

Overv Jew

An extensive library of NIC assembler lanquage subroutines were
written to be used in conjunction with CTL. A listing of them
appears in Appendix C. Together, in conjunction with the NIC
Demon/Il operating system, they provide an opezational system for
use with CTL and, in particular, for obtaining and storino or
displaying frames of pictures from the Hamamatsu camera.

Before describing these subroutines, it is instruc-ive to review
some of the characteristics of the NIC which have particular
significance in the design of its software.

1) Main memory is segmented into 2000 (octal) word sections.
References to (direct) addresses in an instruction are always
relative to the page boundary. Thus, indirect addressing must
be used to reference addresses off of the page. Thus, in
particular, a given subroutine should usually not go across
page boundaries. Also note that location 1777 (relative) on
each page is used by the debugging subroutine NICBUG so should
ordinarily not be referenced by a user program.

2) The word size of NIC is 20 bits. Since data from the CTL (and
the camera) consists of 8 bit bytes, it is usually desirable
to pack them 2 1/2 bytes per word for disk storage.

3) There is no linking loader so once a subroutine is assembled
it is unrelocatable. The CTL associated software has been
partitioned into 6 segments located (approximately) as
follows:

SEG 1 0-1750
SEG 2 2020-2410
SEG 3 2420-2570
SEG 4 2605-3305
SEG 5 3310-3760
SEG 6 4010-4400

Each segment is assembled as a unit and external references
(to other segments and NIC Demon/II modules) are given at the
end of each segment. These references may have to be updated
whenever other segments are changed.

Below, the contents of each segment is briefly described.

49

, - -

Software segments

SEG 1 (MAIN)

This segment contains the CAMERA MAIN program which is a
user interactive program with 8 "modes" of operation having
to do with interfacing with CTL and gathering data from the
camera. It also contains five "command" subroutines, COM1,
COM2, COM4, COMS, COM6 corresponding to the five available
commands in CTL. In addition, there are a few interspersed
local "service" modules used either by CAMERA MAIN or the
COM subroutines.

CAMERA MAIN consists of two CTL/camera related tables, a
short mode query section and 8 mode sections. The first
table, running from 0-23 (all addresses are octal) is the
command table referred to earlier in CTL software. The
second table, running from 24-70 is a camera table which is
used to keep track of the "state" of the camera and to
provide camera secondary address values to be associated
with mnemonics from camera formatting. See comments in
CAMERA MAIN for a description of this table and its use for
camera formatting.

Starting at entry point 71 is a short mode query section
which asks the user to choose one of eight possible modes
(of operation).

Mode 1

This mode provides for initializing CTL and camera. The
mode auery is FILE NAME?- to which the user should res-
pond with the name of the file containing the program to
be loaded into CTL. The user may reply with a non-exis-
tent file in which case whatever is in NIC memory start-
ing a location 100000 is loaded into CTL. This feature
allows the user to make changes in the Z-80 machine code
before it is loaded (see mode 8). Note that the program
exists in packed form (5 hex nibbles per NIC word) in
NIC. After loading the file (if it exists), the camera
table is initialized to the default values (see Table 6).
Followinq this, the CTL reset instructions, CTLRS, is
sent followed by the instruction causing the CTL program
to be loaded. The program is then passed to CTL using
subroutine UNPF which unpacks the contents of 100000 +
... into 8 bit bytes and sends them to CTL.

50

*4A . ,

NAME -EL. ADDR. COMI 1 COO42 C0104 COM5 COM6

- OCT HEX NIC 'CTL N IC CTL NIC CTLI NIC CTL NIC, CTL

hIZS * 0 x X ,, I
x xl

NLZST I1

LISIP 2 2 xI x I (x) i x)'
3 x (X) - 1, (X)

LIS2P 4 4 x x (X) (',),

LIS2S 5 5 x X X) (X) ,

LIS3P 6 6 I x X (X) _ X)

1.1535 7 7 xl x (X) (X)

TALKP 10 8 x__ X (XX~ I X)

TAL JS 1 9 jx x) (x)

EOSC 12 A x lx M

NOAT 13 s x x x x x
NMATH 14 C x J x x x x lx
DATAL 15 D XI X I 1 x

DATAK 16 E I x x x jx:
MfESS 17 F -" - - -
STATI 20 10 -I

STAT2 21 11 I I

DUMI 22 12 x x~
DU2 23 13

X a> always used X) -) sometimes used for "immediate' data

COHN - Command number

NLIST a No. of listeners (or data storage indicator)

LISIP - First listener primary address (or *immediate" data)

LISIS - First listener secondary address (or "immediate* data),

etc. for LIS2, LIS3

TALKP - Talker primary address (or 'immeAiate' data)

TALKS - Talker secondary address (or "imu.ediate' data)

EOSC = End of data character

MDAT a No. of data bytes to be transferred
NDATB - No. of 256 byte data blocks to be transferred

DATAL = Low order byte of 2 byte address for start of data store

DATAB a High order byte of 2 byte address for start of data store

KESS - Not used at present

STATI a Not used at present

STAT2 a Not used at present
DUM1 a Pack/unoack data indicator

DUM2 a Not used at present

Table 6. - NIC/CTL Command Table

51

Mode 2

This mode provides for loading special "commands" into
CTL and then executing them. The mode queries are
COMMAND#?-, to which the user should reply with 7 or 8
and FILE NAME?- to which the user should reply with the
name of the NIC file containing the module to be loaded.
If the file does not exist, it is not loaded, rather the
query is repeated. The following assumptions are made:

(1) the CTL command associated with 7 is to be loaded at
CO0H in CTL.

(2) the CTL command associated with 8 is to be loaded at
EO0H.

(3) the NIC commands corresponding to the CTL commands
are already loaded in NIC.

(4) Each CTL module is a maximum of 512 (decimal) bytes
in length.

At present, the CTL main program contains calls to COM7
and COM8 but the calling addresses are not available.
Thus, the following changes should be "patched" into
the program which is loaded under mode 1 (use mode 8).

location 84E CD0000 => CD000C
location 851 CD0000 => CDO00E

Mode 3

This mode provides for the transfer of CTL programs
developed on other systems into NIC via way of a floppy
disk based intermediary. Specifically, Programs devel-
oped (and debuqqed) on a Tektronix 8002 microprocessor
development system can be stored in a Sykes Comm-Stor
communications storage unit which may then be used to
transfer the program to NIC. The main advantage of the
Comm-Stor for intermediate storage is its portability
(neither the NIC nor Tektronix 8002 is very portable).

The mode query is FILE NAME?-, to which the user should
reply with the name of the Comm-Stor file to be trans-
ferred to NIC. It is stored under the same name in NIC.
The file on Comm-Storr is a direct cooy of a Tektronix
Hex file which is crated using the WHEX command. (See
Appendix D for the format of this file and how it may be
created.) It is basically the ASCII equivalent of the
Z-80 machine code to be loaded into CTL. Before it is
stored in NIC, the header and trailer information on each
record is stripped off and the code is packed - 5 nibbles
per NIC word. This file may be loaded into CTL using
either mode 1 or mode 2.

52

Mode 4

This mode provides for formatting of the camera usinq the
various secondary listener addresses provided for this
purpose (see reference (5)). The mode auery is
MNEMONIC?-, to which the user should reply with one of 5
acceptable mnemonic codes:

OUT - output format (I or 2)
INF - input format (1,2 or 3)
XCC - starting x-coordinate (0000 to 1023)
INT - interlace number (1,2 or 4)
MAR - marker on/off (I or 0)

The current format associated with this code is then
printed. The user may reply with CR (carriage return) to
accept the current value, or type in the new value de-
sired. If a new value is typed in, it is stored in the
camera table. This mode should be repeated for each for-
mat value to be sent to the camera.

Mode 5

This is the mode to be used when a "frame" of video data
is to be obtained from the came :a - either for display or
for storage in NIC. The first mode query is FILE NAME?-,
to which the user should reply with either the name of
the NIC file under which the frame is to be stored or
PRINT (or just PRI) if the frame is to be displayed
rather than stored (see below for restrictions).

The second mode query is FRAME?-, to which the user
should reply with VIi, VII or VIC for 1 line of video,
incremented-video or decremented-video, respectively. In
the incremented- and decremented-video camera modes, sev-
eral video scans are gathered, starting at the current
x-coordinate and ending at either x=1023 (incremented) or
x=0 (decremented). The maximum number of scans is 1024
depending on values for XCO and INT.

Note that XCO must be set to the desired frame x-coordin-
ate using Mode 4, prior to every use of VII or VID.

Whether the frame is actually stored or printed depends
partly on the value of the camera input format (mnemonic
INF). If the value is 1 or 3, the frame is never stored
because the output under this format is ASCII; each pixel
is represented by 4 characters, the last of which is a
space (or possibly CR). In addition, if INF=3, a LF
character is sent every 16 pixels. The maximum scan

53

IJ - -7
-o

. .

. . . . ' Ta -

length, if INF=l, is 256 pixels (1024 bytes) since this
is the buffer space in CTL for storinq a scan line at
present. INF=3 will overflow the buffer at present so
some data will be lost in this format. (There is no need
to use it since in INF=I, the CR/LF is supplied by the
display subroutine in NIC.

Thus, regardless of the file name given, if INF does not
equal 2, the frame is printed only. If INF=2 and the
file name is PRINT, each pixel is displayed as two ASCII
characters representing the hexadecimal value of the
pixel. There is no space between characters and 32
pixels are displayed on one line (versus 16 if INF=l or
3).

Each line of video is gathered using the command
sequence:

COMI - send command to camera to make the next video
sweep.

COM4 - wait for service request - do serial poll.
COM5 - transfer a scan line from the camera to CTL.
COM6 - transfer the scan line from CTL to NIC.

It has been found, experimentally, that a variable length
pause must be inserted between the end of serial poll
(COM4) and the transfer of data to CTL (COMS). The
length of pause required depends on the length of each
scan line. (Thus, it appears that the SRQ message from
the camera is asserted before a scan has been completed.)

It also should be noted that the serial poll response
(RQS STB) for each line of video is printed regardless of
whether the line is to be stored or printed. This can be
used to indicate that a frame is indeed being obtained.

Mode 6

This mode is used to transfer part of CTL memory (either
PROM or RAM) to NIC (starting at location 100000). The
mode query is HEXN-, to which the user should reply with
the 4 digit hexadecimal starting address of memory to be
transferred followed by a single digit representing the
number 256 (decimal) byte locks to be transferred. For
example, 08004 will transfer 4 blocks of memory starting
at hex 800. The contents of memory may then be displayed
by using mode 7. (The number of bytes to be displayed is
saved for use by mode 7.)

54

. 11

This mode is useful for examining the contents of CTL
memory or for storing it for modification using mode 8.
(Note that within NIC the bytes are stored in packed
form.)

Mode 7

This mode is used to display in hexadecimal form (5
nibbles/NIC word), the contents of NIC memory starting at
location 100000 at 32 characters/line. (This corresponds
to one record in the Tektronix Hex file.) This mode is
designed to be run after mode 3 or mode 6 in which case
the number of bytes (=2 nibbles) to be displayed is pro-
vided by these modes. Otherwise, the user should use
NICBUG to insert the number of bytes at the location
labeled NBY5. (This can be found by looking at the
current symbol table for SEGl.)

Mode 8

This mode provides the capability of relatively easily
changing the contents of CTL memory. (Note that, at
present, all instructions except the "boot" program are
in RAM.) The technique is to

(1) bring the program to be modified into NIC by using
either mode 3 or mode 6. Alternatively, the program
can be loaded directly from NIC disk using the
DEMON/II LOAD instruction - assuming the program is
stored there.

(2) examine and change using mode 8.

(3) put the modified program into CTL using mode 1 or
possibly mode 2 (the contents should be put in a NIC
file first if mode 2 is used).

The mode query is OCT-, to which the user should
reply with the (up to 7 digit) octal starting address
of NIC memory to be examined and possibly changed.
(The address given is right justified zero-fill.
Thus, 100=0000100. Usually the address will be
100000 plus.)

The contents of memory at this location is then dis-
played as 5 hexadecimal digits (5 nibbles in each
word). The user may respond with

(a) space (actually any sequence of I to 4 charac-
ters) followed by CR.

55

(b) 5 characters followed by CR.
(c) CR with no preceding character.

If (a), then the next word is displayed with no
change to the current word.

If (b), the current word is changed to the value
given and the next word is displayed. (If the value
is not hexadecimal, then the changed word is "unpre-
dictable".)

If (c), then the mode is exited with no change to the
current word.

The following "escapes" are provided in CAMERA MAIN.

(1) If 6 (control Q) is typed by the user while the "user
monitor" is waiting for input from the user, a jump to
NICBUG is made. (Presumably it is loaded when the other
modules are loaded.)

(2) If ' is typed under the same circumstances, the current
operation is stopped and CAMERA MAIN is restarted (and
MODE?- is typed). This is the usual escape for a
mistyped character.

(3) If any character is typed when the "CTL monitor" is
waiting for input from the CTL, the program aborts to
NICBUG.

(4) In mode 3, 12 must be typed to escape from the "no find"
condition, i.e., if the file name given by the user does
not exist on the Comm-Stor diskette.

COMI, COM2, COM4, COM5, COM6

These 5 subroutines are the counterparts to the 5 command sub-
routines currently in CTL. The flow of control is from NIC
COMn to CTL COMn as follows:

(a) In the main program, e.g., CAMERA MAIN, insert appropriate
parameters in the command table (see Table 6 for the
structure of this table and what parameters are needed for
the various commands.

(b) Insert the command number in the first table location.
(c) Call the appropriate NIC command.
(d) Within the NIC command, the first step is usually to pass

the command table to CTL using a subroutine called WCTL.
(e) "Close" this operation by calling the NIC "CTL monitor".
(f) Perform whatever operations are required by this command.
(g) "Close" the command by again calling the NIC "CTL

monitor".

5 0

L ea....

Miscellaneous Subroutines

The following auxiliary subroutines are imbedded within SEGi.

COMSTO - read characters from Comm-Stor and look for Z for
end-of-file.

FILEQ - type message "FILE NAME?-".
TYPE1 - converts a 4 bit (nibble), left justified, to 8

bit NIC ASCII and type it. (E.g., 1010 =>
3018 = typed "A".)

NIB - packs up to 5 user typed ASCII hex characters into
a NIC word as 4 nibbles per character. These are
left justified, zero fill. In addition, the num-
ber of nibbles (determied by CR) packed is
returned.

ECHO1 - echoes user typed characters (via ECHO) and sets
the byte counter in PAKF to 1 on the reception of
CR.

SCTL - sends bytes from NIC to CTL with two possible
modes: (1) as it appears in the accumulator (ACC);
(2) adding 60 octal to the value in ACC. This
changes binary integers to ASCII integers.

SEG2 (ERMON)

This segment contains auxiliary subroutines directly related
to the transmission of data between NIC and CTL.

ERROR - Under certain conditions, CTL can detect a bus
error. Whenever this occurs, rather than complete
a command, a jump is made to a CTL error routine
which is "matched" by ERROR in NIC. An error is
signaled to MONITOR (see below) throuqh the 9th
bit (the service bit) which is set on error. The
CTL error routine sends a status byte and the 2
byte program counter (PC) of the subroutine which
incurred the error. (NIC) ERROR prints the status
and DC bytes, the number of the command being exe-
cuted and the NIC program counter associated with
the error.
ERROR jumps to the DEMON/II operating system upon
completion.

MONITOR - Reads data into NIC from CTL. It also looks for
the service bit and jumps to ERROR when it occurs.
In addition, it monitors the console (TTY) for

input and jumps to NICBUG when an input is
detected.

WCTL - Transfers a block of unpacked data from NIC to
CTL. This subroutine is use7 mainly to transfer
the command table from NIC to CTL.

57

RCTL - Used by ERROR to read bytes from CTL to NIC since
MONITOR cannot be used here.

CTLTST - This subroutine written by Dave Wright at the
University of Illinois, is the mate to his "boot"
program. It can be used to read or write data
into the various CTL ports. By using CTLTST, it
is possible to direct all bus operations (very
inefficiently) directly from NIC rather than
indirectly through resident CTL modules. It
should be pointed out, however, that with this
algorithm it is not possible to read the port
(08H) which contains the TCI status bit.

ECHO - Input and echo console input. Checks for escape

characters G and Q.
VALID - Transforms hex ASCII (NIC) to NIC binary, with

error exit for non-valid characters.
HEXT - Right justified 8 bit subword as two hex charac-

ters.

SEG3 (IOSUB)

This segment contains tne I/O subroutines used for storing
information on the disk. Use is made of the DEMON/II modules
DIRFUN for directory manipulations and DISK for actually read-
ing and writing the disk. (DEMON/II is the disk operating
system supplied by Nicolet.)

OPENW - Opens a file for write by locating the next
available space (given the size of the file to be
stored) or the first track after the last file
stored.

OPENR - Opens a file for read by returning the starting
track and file size.

CLOSE - Closes a file just written by adding the file name
and other parameters to the directory.

WRITE - Write one or more records from the buffer to the
disk (here a record is one track).

READD - Read one or more records from the disk to the
buffer (assumed to start at address 100000).

DIRFIN - Swap locations 3000-7600 for directory operations
(reads directory into core).

DIROUT - The opposite swap to DIRFIN.

SEG4 (PACK)

This segment, for the most part, contains subroutines which
are involved in the packing and unpacking of data.

PRTOCT - Prints the octal value of the contents of ACC.

58 !4

S.r-'j,,-

UNP - Unpacks packed ASCII text and prints it. (Here
one word contains 3, 6 bit characters, right
justified.) This is used extensively to print
messages which are stored using the TEXT pseudo-op
in the Disk Editor.

TYPE - Type one character. (This is a 4 line routine
used by many other modules.)

CRLF - "Prints" carriage return, line feed.
UNPF - Transfers (and possibly unpacks) data from core to

another location via a subroutine, the address of
which is passed to UNPF. The packed data can be
either 5 nibbles/word or 2.5 bytes/word.

PAKF - This is the inverse of UNPG except nibble packing
is not done. (See DEC for this.)

PKR - This is the inverse of UNP except that it packs
characters into 2 words only. It is used mainly
to store file names from characters typed by the
user.

SEG5 (TEKX)

This segment contains the three major subroutines used with
mode 3 for transfering "WHEX" files stored on Comm-Stor to
packed Z-80 machine code files for use in CTL.

DEC - Transforms (in place) a packed (2.5 bytes/word)
ASCII hex string to packed nibbles (5 nibbles/
word). This a a highly "subroutine interactive"
module wherein, the state of the subroutine can be
observed on exit.

NIBBIN - Converts packed BCD or BCH (binary coded hexadeci-
mal) to binary.

TEKHEX - Converts a Tektronix Hex file (stored in 2.5
byte/word packed form in NIC) into the binary file
(5 nibbles/word) to be used by CTL. (Note that
when the file is read into CTL it is unpacked - 2
nibbles at a time are passed to CTL.) The trans-
formation is mainly that of st.-ipping off the
header and trailer information and doing a
checksum on the remainder.

SEG6 (MISCL)

This segment contains various "miscellaneous" subroutines.

NICFIL - Creates a file by transfering data from the buffer
(starting at 100000) onto the disk and adding the
file name to the directory. That is, the OPENW,
WRITE and CLOSE operations are done. This
subroutine should be used only if the complete
file can be stored in the buffer (8192 20 bit
words).

59

SEARCH - Search and replace the contents of the camera
table.

ZERTAB - Zeroes the command table.
MULTP - Integer multiply two 20 bit values and place the

low order bits in ACC. The high order bits are
stored in the MQ (multiplier-quotient) register.

DIVDE - Integer divide either a 40 bit or 20 bit value by
a 20 bit value to obtain a 20 bit value plus
remainder. Note that DIVDE is designed to follow
MULTP but can be used alone provided that MQ is
set to zero first.

SENDF - Prints the contents of ACC (assumed to be a deci-
mal or octal integer number) after conversion to
ASCII by adding 260 octal, or as two ASCII hexa-
decimal characters. In addition, carriage return,
line-feed is done after a user specified number of
bytes have been printed.

GETFIL - Obtains a file and stores it in the buffer area
(the inverse of NICFIL).

60

Ik

References

The following is a short, annotated list of references containing
information specific to topics discussed in the body of this
report or in the appendices.

(1) Z-80

There are numerous references describing the Z-80 uP and its
programming.

Mostek Corp., 1979 Microcomputer Data Book, o.75-164.
This reference contains a detailed technical descrip-
tion of the Z-80 (and Z-80A), a listing of OP codes in
"Zilog nmemonics", and some programming examples.

Barden, W., The Z-80 Microcomputer Handbook, Howard W. Sams
& Co., Inc., 1978.

Discusses Z-80 hardware, software and some Zilog Z-80
Microcomputers.

(2) 8291/8292/8293 (8291-set)

Intel Corp., Peripheral Design Handbook, Aug. 1980.
8291 p.1-199 to 1-224
8291 p.1-225 to 1-238
8293 p.1-239 to 1-251
Using the 8292 GPIB Controller p.2-187 to 2-239

This is the reference used for the "8291-set" during
design and implementation of the CTL. All that is
"known" about this chip set is contained in this
reference.

(3) GPIB (IEEE-488)

IEEE, IEEE Standard Digital Interface for Programmable
Instrumentation, 1980. (Available from IEEE Service Center,
445 Hoes Lane, Piscataway, NJ 08854.)

This is the official American standard for the
interface. It is quite technical and difficult to
comprehend on first reading.

61

j1

Philips, N.V., Digital Instrument Course, Part 4 IEC Bus
Interface, N.V. Philips Gloeilampenfabriken, Test and
Measuring Dept., Eindhoven, The Netherlands. Publication
No. 9498.829.00311 ($8.00).

This is a readable discourse on the GPIB. (Note that
the European equivalent to the IEEE-488 standard is the
IEC 625-1. It differs from the IEEE-488 essentially
only in the connector type used.)

Hewlett-Packard, Tutorial Descriotion of the Hewlett-
Packard Interface Bus.

This is an elementary tutorial on the GPIB (which HP
calls HP-IB). It contains a quite complete and
up-to-date bibliography.

(4) Nicolet 1080

Nicolet, Programming the Nicolet 1080 Stored Program

Computer, NIC-80/S-7111-M. Nicolet Instrument Corp., 5225
Verona Rd., Madison, WI 53711.

This is the standard source of information on
programming the 1080 in assembler language.

Nicolet, DEMON/II Disk Executive Monitor for the Nicolet 294
Disk System, 1973.

Describes the d,.k storage system and software avail-
able for readina and writing the disk as well as some
simple utility prnt ams such as STORE file and LOAD
file.

Nicolet, Integrated Monitor Package for DEMON/II, 1974.
Describes higher level utility programs such as the
Disk Editor, Disk Assembler and Disk Loader.

Nicolet, Programmed Data Transfers, NIC-80/X-7113-D.
This Nicolet document descirbes how to interface to the
Nicolet 1080 via the 80 pin I/O connector.

(5) Hamamatsu GPIB Interface

Hamamatsu, M999-04 General Purpose Interface Bus. An
IEEE-488 Standard Interface for the C1000 Camera, 1977,
Hamamatsu Systems, Inc., 332 Second Ave., Waltham, MA 02154.

This reference provides the GPIB message protocol used
by the Hamamatsu interface and describes the Interface
functions which have been implemented.

62

APPENDIX A - CTL Hardware

(a) Schematic

(b) Component Layout

(c) Wire-Run List

63

~c a

4-44

ay

it '

"424

. ,-9-

A3 iA

LA7- _____toll--~- AV 2

A.

ZO 4 Ui _____1.3__IS__T__

V IN' 7A

Is((lli161 11 I- ,- :

+s

64 I.4

ipl

-S- b g,:. ', ; ",, -

A . V tli I

MA5I_ I

VI Z

65

..: "' .. .

f,,i1 I r,;7

&w

I

£00

?..-..

.4 L

Coo

E~LL

04
,,, --- I..JI

LiX

A G ' 0 Hi (: ' l, -IiJfII "' 4 -6

Wire-Run List

Al P1-Alp 4-Al P14-V cc
AlP2-A1P6
AIP3-D2P2
Alp5-D2P3-D2P5
A1P7-Gnd

A2Pl-A2P4-A2Pl0-A2Pl3-A3PI-A3P4-A3PI0-A3P13-A4Pl-A4P5-BI6P13
A2P2-B3P2
A2P3-NICBUS 1
A 2P5-B 3P5
A2P6-NICBUS 3
A 2P7-G nd
A2P8-NICBUS 7
A 2P9-B 3P9
A2Pll-NICBUS 5
A 2P 12-B 3P6
A2Pl4-Vcc

A3P2-B3Pl2
A3P3-NICBUS 9
A3P5-B3P15
A3P6-NICBUS 11
A 3P7 -Gnd
A3P8-NICBUS 15
A3P9-B3P19
A3P~l-NICBUF 13
A3P12-B3P1'6
A3Pl4-Vcc

A4P2-B4P7
A4P3-NICBUS 17
A4P4-B2Pl3-B6Pl-B8P8
A4P6-NICBLJS 66
A 4P7 -G nd
A4P8-AllP2
A4P9-A4P16-A4Pl1-Al1P3
A4P12-A4P13-Cl1P3-D2P6
A4Pl4-Vcc

67

A5P1-C9P11
A5P2-A1 1P12-B2P12-B3P3-B4P12-B5P2-C1 1P12
A5P3-NICBUS 2
A5P4-NICBUS 4
A5P5-All213-B2P14-B3P4-B4P5-B5P3-Cl1P13
A5P6-AllP14-B221 6-B3P7-B5P4-Cl11214-D4P10-X3P13
A5P7-NICBUS 6
A5P8-NICBUS 8
A5P9-A11215-B2P18-133P8-B5P5-C11P15-X3Pl1
AS P10-Cnd
A5P11-B9P9'-BlOP11-D10211
A5P12-A1 1216-B2P9-B3P13-B4P4-B5P6-C11Pl6-X3P9
A5Pl3-NICBUS 10
A4P14-t~ICBUS 12
A5P15-A11P17-B2P7-B3P14-B5P7-C11217-X3P7
A5P16-A1 1P18-B2P5-B3P17-B5P8-Cl1P18-X3P5

A5P17-NICBUS 14
A5P18-NICBUS 16
A5P19-A1 12'.9-B2P3-B 3Pl8-B5P9-Cl1P19-X3P3

A 721-C9P 3
A7p2-B4P9-D4PI0
A7P3-B6P10-D9P5-DlOP2-D10P6
A7P4-D)4P2-D4P5
A7P5-CI1P6
A7 P6-B6P2
A7P7-Gnd
A 728-B 3211
A7P9-B8P4-B82 13-C 926
A7Pl0-B10211
A7P11-NICBUS 58
A7P12-D1OP12
A7P13-D4P8
A7P14-Vcc

A9P1-NICBUS 48
A9P2-NICBUS 46
A9P3-A10P2
A92 4-Al10P4
A 925-Al 021
A9P6-B9P1
A 927-G nd
A 928- B 129-B 10212
A9P9-B9P4-B9 25
A9PlO-A9Pl3-892
A9P11-A1OP12-Bl025
A9P12-B9P6
A9P14-Vcc

68

A10P3-NICBUS 56
AlOP5-NICBUS 52
AlSP6-NICBUS 50
All P7 -Gnd
AlOP8-A10P13-CllP4-D3Pl1
AlIP9-Bl0P10
All P10- B8P 3-B 8P 11
AlOPi l-B9P1 -Bl10P8
AlOPl4-Vcc

AllPl-Al2P25-C12P12
All P4 -B 4P1- C8P26 -D3 PlO
AliP5-Al 1P26-AllP40-Vcc
AllP6-D4P6
AllP7-AllP20-Gfld
A1lPB-CllP9-D9Pl1-Dl 0P5
AllP9-C3P5-C4P5-Cl 1P2 l-D5P3-XlP5-X2P5-C6P8
AllPl0-C3Pl0-C4P-ClIP10-D9Pl3-Dl0P3-XPl0-X2PlO-X

3 Pl 2

6.21P21-A12P8-C11P27
AlIP22-Al2Pl
A11P23-Al2P5-Cl 1P24
Al1P24-Al2P22-SW6
Al1P27-A12P21
AllP29-Al2P23-Cl2Pll
AllP31-Al2P24

Al1P32-X3Pl0
AllP33-X3P6
A11P35-X3P4
Al1P36-X3P2

Al1P3 4-Al 2P7
Al1P37-CllP36-C12P24
AllP38-Al2P6-CllP25
AllP39-Al2P3-CllP39-C12P3
A12P-CIPI-Cl2Pl
A12P2-CllP2
A12P4-CllP26-Cl2P4
A12P9-ClIP37
Al2Pl 0-Cl lP38
A12P12-IEEE488
A12P13-IEEE488
A12P15-IEEE488
A12P16-IEEE488
A12P17-1EEE488
A12P18-IEEE488
A12P19-IEEE488
A12P26-Vcc-A12P28
A12P27-Gnd-Al2P14

69

B1Pl-D2Pl
BlP7 -G nd
BlPl4-Vcc

B2Pl-B2P19-C9P8
B2P2-RPlP3-SW2
B 2P4-PPP4 -SW 3
B2P6-RPlP5-SW4
B 228-P1P6- SW 5
B2Pl0-Gnd
B2P11-RP1P2-Sw1
B2P15-B8P6
B2Pl7-C11Pll
B2P20-Vcc

133PI-B3P10-Gnd
B3220-Vcc

B4P2-i36P13
B4PBI-B62
B4P8-G'nd
B4P16-Vcc

B5P1-C9PI0-C9Pl3-Dl0P4-X4P2
B 5P10-Cnd - B5219
B5PlI-C4PII-CBP13-C6P17-XIPII
B5 P12-C 4P 12-C 6P 16-C8PlO-X 12
B5P13-C4Pl3-C6P15-C8P9-XlPl3
B5P14-C4P14-C6P14-C8P7-XlPl4
B5P15-C3PI1-C6P12-C8P8-X2Pll
B5P16-C3P12-C6Pl1-C8P12-X2P 12
B5P17-C3P13-C6P10-C8P15-X2P13
B5Pld-C3P14-C6P9-C8Pl4-X2Pl4
B5P20-Vcc

B6P3-B6P4
B6P5-B6Pl1
B6P6-B 629
B6P7-Gid
B6Pd-D3p9
B6P14-Vcc

Bi3P2-B8P12-88P14-Vcc
B8UP5-C8P 16
B UP7- Gnd
B8PI0-DlOP13

70

B9P3-NICBUS 44
B 9P7 -Gnd
B9P11-NICBUS 60
B9Pl 2-B10P6
B9P13-NICBUS 62
B9P14-Vcc

Bl10P7-G nd
B lOP 14-V cc

C 3P1-C4P1-C6P2-D5P3-XlP1-X2P1-C9P 5-C9P 12
C3P2-C4P2-C6P3-D5P9-X1P2-X2P2-D4?1
C 3P3-C4P3-C6P4-D5P11-X1P3-X2P3-D4P4
C3P4-C4P4-C6P5-D5P13-XlP4-X2P4-X4 P1
C3P6-C4P6-C6P7-D5P5-X1P6-X2P6-C1 1P22
C3P7-C4P7-C6P6-D5P7-X1P7-X2P7-Cl1 P23-C9P2-C9P9
C3P8-C4P8-X5P6
C3P9-Gnd
C3Pl5-C4P15-C6P22-D6P13-XlP15-X2P15
C3Pl6-C4Pl6-C6P23-D6P7-XlP16-X2P16
C3P17-C4P17-C6P1-D6P5-XlPI7-X2P1 7
C3Pl8-Vcc

C4P9-Gnd
C4P1B-Vcc

C6P12-Gnd
C6P18-D4P13-D6P9
C6P19-D3Pl-D6P9-X5P5
C6P20-D3P1 3-D9P3
C 6P 21-C 6P24 -Vcc

C8P1-D6P1O
C8P6-Cl0P3-C1OP11-2N3906 [CI
C8P11-C8P17-C8P25-Vcc
C8P19-D9P2
C8P20-D9P4
C8P21-D912
C8P22-D9Pl4
C8P24-DlOP10
CdP27-C1OP2
C8P29-Gnd
C8P30-D5P2
C8P31-D5P4
C8P32-D5P6
C8P33-D5P14
C8P34-D5P12
C8P35-D5P1O
C 8P 36- D6P2
C8P37-D6P4
C8P38-D6P6
C8P39-D6PI4
C8P40-D6Pl2

71

C9Pl-C9P4-D1OP1
C9P7-Gnd

C10Pl-C1OPIO-ClOP13-C1OP14-Vcc
ClOP 4-Cl10P9
C1SP5-ClOP12
Cl0P6-DIOP9
C10P7-Gnd
C10P14-Vcc

CliPS -D9P 10
C11P7-ClIP40-Vcc
C11P8-D4P3
ClIP2 0-Gnrd
C12P28-Cl2P25
CllP29-C12P23
Cl1P30-Cl2Pl0
C11P31-C12P9
C11P32-Cl2P8
Cl1P3 3-C12 P7
C11P34-Cl2P6
CllP3 5-C12 P5

C12P12-IEEE 488
C12P13-IEEE 488
Cl 2 P14-Gnd
C12P15-IEEE 488
C12P16-IEEE 488
C12P17-IEEE 488
C12P18-IEEE 488
C12P19-IEEE 488
C12P21-IEEE 488
C12P22-IEEE 488
C12P26-C12P27-C12P28-Vcc

D 2P7 -Gnd
D2P14-Vcc

D3P2-X5P1O
D3 P7-G nd
03PS-D1OP8
D3P12-D4PI2
D3Pl4-Vcc

D4 P7-Gnd
D4P1 1-X5P4-X5P9
D4Pl4-Vcc

D5P1-D5P8-D5P15-Gnd
D5P6 -V cc

72

ALA -. ,

D6Pl-D6PB-D6PlSGld
D6P16-Vcc

D9P1-D9P8-D9P15-Gnd
D9P16-Vcc

Dl0P7-Gnd
Dl0P14-Vcc

XlP8-X2P8-X5P8
Xl P12-C nd
XlP24-Vcc

X 2 P12-Gnd
X2P24-Vcc

X3P1-X3P15-X4P3
X3 P8-C nd
X3P14-X3Pl6-Vcc

X4P7-Gnd
X4p14-Vcc

X5 P7-C nd
X 5P14-V cc

73

APPENDIX B -CTL Software

74

GENERAL PURPOSE FhiM CODE LISTING

0001 ; GF:ERAL PURPO-:E PROM CODE DAN TFRPSTRA 7/19/80

0003
0004 ; THIS CODE IS DESIGNED TO BE BUbhED INTO A ROM
0005 ; TO PROVIDE 3 GENERAL PURPOSE ROUTJN?.., FOR THE
0006 ; NIC-488/CTL NICOLET-1080 TO IEEE-_18 RUS TNTERFACE
0007 ; THE 3 COMMANDS ARE:
0008 ; READ: XXXXIXXX PINARY

0009 ACCEPT C',14AD BYTE FhOM NICP. TREAT
0010 ; IT AS PORT ADDRESS. READ THIS PORT
0011 ; AND SEND CONTENTS TO NICP.
0012 : WRITE: YYXXOYXX PNARY
0013 ; . '§4AND BYTE AS PO f ',RESS.
0014 ; (.CrA f;ECOND BYTE AS C,.,-'
0015 ; '42iD SECOND BYTE TO PORT AlA , !
0016 ; IN FIRST BYTE AND SET DONE.
0017 ; BOOT: 00000000 BINARY
001F ; SET DONE TO ACKNOWLEIGE RECEIPT OF
0019 ; COMMAND. ACCEPT NEXT 101-4 BYTES 1'.
0020 ; NICP AND STORE IN RAM FROM 800H TO
0021 ; BFFH. TRANSFER CONTROL TO NEWLY
0022 ; LOADED PROGRAM AT 800H. STACK IS
0023 ; DESTROYED.
0024 ; IF UnV) (X THE NICP, CTRLI, OR CTRLC POT1,
0025 ; THE Ilc AD ANU WRITE COMMANDS MAY PRC)DU i hAt rdESS
0026 ; BUT INCORRECT RESULTS, SINCE THESF PORTS ARE MOD-
0027 ; IFIED ON EXECUTION OF THE ROUTINES.
0028 ; THIS CODE ALSO CONTAINS AN INITIALIZATION
0029 ; ROUTINE THAT TURNS ON ALL 8291 AND 8292 MASKS, AND
0030 ; SETS THE DEVICE ADDRESS FROM THE USER-SETTABLE
0031 ; SWITCHES. AFTER RESET, THE CTL WILL BE THE ACTIVE
0032 ; CONTROLLER-IN-CHARGE, AND WILL BE IN A TALK-ONLY
0033 ; STATE. THE USER MAY FIND IT NECESSARY TO INITTAL-
0034 IZE OTHER REGISTERS OUTSIDE OF THIS i;'.NE FOR A
0035 ; SPECIFIC APPLICATION.
0036

0037
003P
()03('

0000' 00!"0 ORG 0
0041
0042 ; CTL COMMAND EQUATES

(0001) 0043 DNEWT: EQU Ol ;WAIT-ON-DOlE COMMAND
(0006) 0044 BUSY: EQU 06 ;BUSY BIT IN CTRLO
(0002) 0045 TLRST: EQU 02 ;TALKER/IIS'vN:R RESET
(00F2) 0046 CRST: EQU OF2H ;CONTROLLE Rh T

75

-. I

C047
0048 ; CONTRO.LER PORT A1(,1GENTS

(0010) 0049 CONTO: EQU 1OH ;PASE ADDRE.SS -CR CONTROLLER
(0011) 0050 CONTI: EQU ('o0j'ro+10051 ;

00 ,2 ; TALKFR/LISTENER PORT ASSIGNM2NTS
(0020) (053 TLC: EQU 20H ;BASE ADDRESS FOR TALKER LSTENER(0021) 0054 TL1: EQU TL0+1

(0022) 0055 TL2: EQU TLO+2
(0023) 0056 TL3: EQU TLO+3

(0024) 0057 TL4: EQU TL0+4(0025) 0058 TL5: EQU TLO+5
(0026) 0059 TL6: EQU TLO+6
(0027) 0060 TL7: FQU TLO+7

0061 ; CTL PORT ASSIGNMENTS
(0040) 0062 NICP:EQU 40H ;BIDIRECTIONAL NICOLET INTERFACE
(0080) 0063 CTRLO:EQU 80p ;CONTROL OUTPUT PORT(0(Po) .'64 CTRI.I:EQU 80H ;CONTROL INPUT PORT

,u65 ;
0066 ; CTL MEMORY LOCATIONS

(000) 0067 RAM: EQU 0800H ;FIRST ACTIVE PAM ADDRESS(OBFF) 0068 RAMTOP: EQU OBFFH ;LAST ACTIVE RTM ADDRFSf
0069
0070 ;
0071 ; COLD START ENTRY PONT
0072 ;SETS UP THE STACK AND ENTERS THE COMMANr DECODER
0073 ;

ooo 21FFOE 0074 START:LD HL,RAMTOP ;GET TOP ALDRESS OF RAM
00.-3, F9 0075 LD SP,HL ;STORE IT IN STACK POINTER0004 CE55G0 0076 CALL INIT ;INITIALIZE GPIB INTERFACE

0077
0078 ; COMMAND DECODER
0079

0007 DB80 0080 CMND:IN A,(CTRLI) ;CHECK CONTROL INPUT FOR
BUSY

0009 CB77 0081 BIT BUSY,A ;IF BUSY, DATA IN NICP
0OOB 28FA 0082 JR Z,CMND ;NOT BUSY,LOOK AG;PNOOOD DB40 0083 IN A,(NICP) ;READ VALID COMMAND
OOOF FEO 0084 CP 0 ;IF COMMAND 0 0, BOCT0011 281C 0085 JR Z,BOOT ;IF BOOT, EXECUTE
0013 CB5F 0086 BIT 3,A ;CHECK READ/WRITE BIT0015 2807 0087 JR Z,WRITE ;IF 0, EXECUTE WRITE

0088 ;
0089 ; COMMAND: READ PORT, RETURN CONTENTS IN NICP
0090

0017 4F 0091 READ:LD C,A ;SET UP PORT ADDRESS
0018 ED78 0092 IN A,(C) ;GET PORT CONTENTSO01A D340 0093 OUT (NICP),A ;SEND CONTENTS TO NICP001C 18E9 0094 JR CMND ;LOOK FOR NEXT CO.2MAND

76

0095
0096 ; COMMAND: WRITE N7XT BYTE TO PO:T ADDRESSED IN A
0097

001E 4F 0098 WRITE:LD C,A ;SET UP PORT ADDRESS
LOIF D340 0099 OUT (NICP),A ;SET DONE WITH COMMAND BYTE
0021 DB80 0100 WRI: IN A,(CTRLI) ;LOOK FOR NEXT BYTE
0023 CB77 0101 BIT BUSY,A
0025 28FA 0102 JR ZWR1 ;IF NOT BUSY,LOOK AGAIN
0027 DB40 0103 IN A,(NICP) ;BUSY, GET NEXT BYTE
0029 ED79 0104 OUT (C),A ;SEND AS DATA TO PORT (C)
002B D340 0105 OUT (NICP),A ;SEND TO NICP TO SET DONE
002D 18D8 0106 JR CMND ;OK FOR NEXT COMMAND

0107 ;
0108 ; COMMAND: BOOT 1K BYTES FROM NICP TO hAM AND EXECUTE
0109

002F D340 0110 BOOT:OUT (NICP),A ;SET DONJE WITH ,OMMAND BYTE
0031 210008 0111 LD HL, RAM ;SET UP RAM POINTER
0034 3E01 0112 LD A,DNEWT ;WAIT-ON-DONE
0036 0600 0113 LD B,O ;BYTE COUNT = 256
0038 OE40 0114 LD C,NICP ;NIC 1080 DATA PORT
003A 1604 0115 LD D,04 ; # OF 256 BYTE

PAGES TO READ
003C D380 0116 OUT (CTRLO),A ;ENABLE DONE WAIT
003E DB8O 0117 BOOTI: IN A,(CTRLI) ;READ CONTROL PORT
0040 CB77 0118 BIT BUSY,A ;LOOK FOR BUSY BIT
0042 28FA 0119 JR ZBOOTI ;IF NOT SET LOOK AGAIN
0044 EDA2 0120 BOOT2: INI ;READ A DATA BYTE
0C46 ED79 0121 OUT (C),A ;SET DONE FLAG
0048 20FA 0122 JR NZ,BOOT2 ;NOT LAST BYTE,PEAD ANOTHER
004A 15 0123 DEC D ;DECREMENT PAGE COUNT
004B 20F7 0124 JR NZ,BOOT2 ;NOT LAST PAGE, READ ANOTHER
004D AF 0125 XOR A ;SET A=0
004E D380 0126 OUT (CTRLO),A ;DISABLE DONE WAIT
0050 C30008 0127 JP RAM ;EXECUTE AT START OF

RAM

77

ASM TT CONO (TLSYM TTLMAC CTLMAIN TTLSUBS TTLSUBO CTLSTOR
Tektronix Z80 ASM V3.3
**** Pass 2
Tektronix Z80 ASM V3.3 NIC-488-CTL Page

00002 IST
00003 NOLIST MEG
00004 GLOBAL COM],COM2,COM3,COM4,COM5,COM6,COM7
00005 ;GPIB CONTROLLER SUBROUTINES ADAPTED FROM I
00006 ;PERIPHERAL DESIGN HANDBOOK, AUG. 80,P 2-21
00007
00008
00809 8291 CONTROL VALUES
00010
00011 0020 PRT91 EQU 20H ;8291 Base Port #
00012
00013 Reg #0 data-in &data-out
10014 0020 DIN EQU PRT91+0 ;Data-in reg
00015 0020 DOUT EQU PRT91+0 ;Data-out req
00016
00017 ;Reg #1 Interrupt 1 Constants
00018 0021 INTI EQU PRT91+1 ;INT Reg 1
00019 0001 BDM EQU 1 ;BO status bit no.
00020 0001 BIM EQU 01 ;91 BI INTERP Mask
08021 0010 ENDMK EQU l0l ;91 END INTERP Mask
00022 0080 CPT EQU 80H ;91 command oass through in
00023
00024
00025 Reg #2 Interrupt 2

00026 0022 INT2 EQU PRT91+2
00027
00028
00029 ; Reg #4 Address Mode Constants
00030 0024 ADRMD EQU PRT91+4 ;91 address mode reqister #
00031 0080 TON EQU 80H ;91 talk only mode & not li
00032 0040 LON EQU 40H ;91 listen only and not ton
00033 0001 MODEl EQU 01 ;91 mode I addressing
00034
00035 Reg #4 (read)
00036 0024 ADRST EQU PRT91+4
00037 0002 TA EQU 2 ;Talk active
00038
00039
00040 ; Req #5 (write) Auxiliary Mode Reqister
00041 0025 AUXMD ECQU PRT91+5 ;91 auxillary mode register
00042 0024 CLKRT EQU 24H ;91 4 Mhz clock input
10043 0003 FNHSK EQU 03 ;91 finish handshake comman
00044 00[VSCMD EQU OPH :91 Valid command pass-thro

78

• , . *1*

00045 0006 SEOI EQU 06H ;91 send EOX
00046 0980 AXPA EQU 80Hi ;91aux. req A pattern
00047 0002 HOEND EQU 2 ;91 hold off handshake on e
00048 0008 ECIS EQU 8 ;91 output EOI on EOS sent
10949 0004 EDEOS EQU 4 ;91 end on EOS received
00050 OOAS AXRB EQU 0AOH ;Aux. req. 8 pattern
00051 0001 CPTEN EQU 01lt ;Command pass-through enabi
00052
00053 Reg #5 (read)
00054 0025 CPTRG EQO PRT9l+5 ;Command Pass-through ?Reg

79

Tektronix Z80 ASM V3.3 NIC-488-CTL Page 2

00055
00050
00057 Reg #6 Address 0/1 reg. constants
10058 0026 ADR01 EQU PRT91+6
00059 0060 DTDLI EQU 60H ;Disable major talker $ lis
10060 00E0 DTDL2 EQU 0E11 ;Disable minor talker & lis
10061
00062
00063 Reg #7 EOS Character Register
10064 0027 EOSR EQU PRT91+7
00065
00066
00067 8292 CONTROL VALUES
00068
00069
00070 0010 PRT92 EQU 10H ;8298 Base Port #
00071
00072 0010 INTMR EQU P0T92+0 ;92 INTRP Mask Reg
00073 OOAO INTM EQU OAOH ;TCI
00074
00075 0010 ERRM EQU PRT92+0 ;92 error mask register
10076
00077 0010 ERFLAG EQU PRr92+0 ;error flag pseudo-register
10078 0002 TOUT2 EQU 02 ;92 time for standby
10079 0004 TOUT3 EQU 04 ;92 time out for TC
00080
00081 0010 TOREG EQU PRT92+0 ;92 time out pseudo-registe
00082 007F TMOUT EQU 7FH ;Time out byte for TOREG
00083
00d4 0011 CMD92 EQU PRT92+l ;92 Command Register
10085 0011 INTST EQU PRT92+l ;92 Interrupt Status Reqist
10086 0002 IBFBT EQU 2 ;Input Buffer full bit
10087 0020 SRQBT EQU 20H ;SRQ bit
10088 0040 ERRBT EQU 40H ;ERR bit
10089
00090 0010 CLRST EQU PPT92+0;92 Controller Status pseudo
00091 0008 SYCS EQU 08H ;Control Switch Status
10092 0040 CABT EQU 40H ;Controller active bit
10093
00094 0010 TOST EQU PRT92+0 ;92 time out oseudo-registe
00095
00096 0010 BUSST EQU PRT92+0 ;92 GPIP status oseudo-regi
00097 0008 SYCBT EQU 08H ;SYC status bit
10098
00099 8292 OPERATION COMMANDS
00100 00F2 RSET EQU OF2H ;Reset
10101 00F3 RSTI EQU 0F3H ;reset interrupts
10102 00F6 GTSB EQU 0F6H ;Goto standby

80

I ' , ,. *1

. - , .. 0, ', : . . , . - . I I . ,j. ' • L I

68113 0 AORT EQU SF9N ;Interface clear

90104 @OFC TCASY EQU OFCtI ;take-control asynchrolouIsl

90195 6@D TCSY EQU *E08 ;Take control syncrofolOly

00106 60PA TCNTR EQU OFAH ;Take control (receive cont

90107

- It

Tektronix Z80 ASM V3.3 NIC-488-CTL Page 3

00108 8292 UTILITY COMMANDS
00109
00110 00E1 WTOUT EQU 0EIH ;write to time out register
10111 00E4 RERF EQU OE4H ;read error flag register
10112 00E6 RCST EQU OE6H ;read Controller Status Reg
00113 00E7 RBST EQU 0E7H ;read GPIB status pseudo-re
00114 0008 IACK EQU 0BH ;Interrupt acknowledge
00115
00116 8292 INTERRUPT PORT
00 117
00118 0008 PRTF EQU 0811
00119 0001 TC1F EQU 01H ;Task complete interrupt
1i120
00121 GPIB MESSAGES (COMMANDS)
00122
00123 0001 MDA EQU I ;Mv device address is 1
00124 0041 MTA EQU MDA+40H ;My talk address is 1 ("A")
00125 0021 MLA EQU MDA+20H ;My listen address is I ("I
00126 003F UNL EQU 3FH ;Universal unlisten
00127 005F UNT EQU 5FH ;Universal untalk
00128 0018 SPE EQU 18H ;Serial poll enable
00129 0019 SPD EQU 19H ;Serial poll disable
00130 0009 TCT EQU 9 ;take control (pass control
00131
001 32
00133 ; CTL PORTS
00134
00135 0080 CTRLI EQU 8011 ;CTL 8-bit control input
10136 0001 ASRO EQU I ;address switch 1
00137 0002 ASR1 EQU 2 ;address switch 2
00138 0004 ASR2 EQU 4 ;address switch 3
00139 0008 ASR3 EQU 8 ;address switch 4
00140 0010 ASR4 EQU]OH ;address switch 5
00141 0005 DONE EQU 5 ;DONE status bit
10142 0006 BUSY EQU 6 ;BUSY status bit
10143 0088 INT8ST EQU 8011 ;8291 interrupt status hit
10144
00145 0080 CTRLO EQU 80H ;CTL 4-bit control output
1014b 0001 DNEWT EQU I ;enable WAIT-ON-DONE
00147 0002 SRVC LQU 2 ;set service reouest bit
10148 0004 DNEC, EQU 4 ;DONE clear pulse
00149 0010 DMAWT EQU 101 ;enable WAIT-ON-DONE
00150
00151 NICP PORT (IN/OUT TO NICOLET)
001 52
00153 0040 NICP EQU 401
00154
00155 MISCELLANEOUS DEFINITIONS

82

,I.

.... L . - - 'l , t' ty. t L _ ,,.,,''. . ' ... , ..["-- ', ' . ..

01156 8B9D)TABLE EQU COMN ;address of parameter table

88159

83

Tekt ron ix Z80 ASM V3.3 NIC-488-CTL Page 4

00161 JANUARY 27,1981
00162

i' 00163

00164 MACRO DEFINITIONS

30165 MACRO WAITO ;wait for byte out to bus

00166 LAB'@' IN A,(INTI)

00167 BIT BOM,A

00168 JR Z,LAB@

00169 ENDM

00 L70
00171 MACRO WRREG ;REG,VALUE,ILABEL)

00172 , REG=reqister to write to

00173 VALUExvalue to write

00174 , LABEL=optional jump to

1115 D A,'2'

00176 OUT ('1'),A

0017/ K ASET 3

00!78 IF K=-#1
ilk) 179 ,JR 13-

01 1d0 ENDIF

00181 ENDM

00 183 MACRO CTLNIC

00 d4 WRITES BYTES TO NIC FROM CTL

00 18) CTI'@' IN A, (CTRLI)

1001,36 BIT DONE,A

017 JR NZ,CTI'@'

00188 OUTI
00189 JR NZ,CT1'@'

00191) ENDM
00[91
00192 MACRO N I CCTL

0019i ; READS BYTES FROM NIC TO CTL

00194 Nil'@' IN A,(CTRLI)

0019', BIT HUSY,A

0019b JR Z,Nll'@'

00197 INI

00 148 OUT (C) ,A

00199 JR NZ,NII'@1'

00200 ENDM

0020}2 MACRO NICCTLI ;READS A SINGLE BYTE FROM N

00203 NIl'@' IN A,(CTRLI)

00204 n IT BUSY,A

00205 JR Z,N]] '@,

00 20k IN A,(NICP)

00207 LD D ,A

'ILI208 OUT (NICP),A

u4

- -" . , ' .. . - ' 2 ,

60 2 09 ENOM

85

Tektronix Z80 ASM V3.3 NIC-488-CTL Page 5

00212 ; JANUARY 30,1981
00213
00214
00215 ; MAIN CONTROL ROUTINE
00216
00217 ;PURPOSE -- This is the CTL excutive routine which
0021d in that it performs commands issued by NIC
00219 wait state (waits for input from NIC) after
0022 t ; If a command can not be completed because o
00221 considered fatal), the executive returns to
00222 an error subroutine which, among other thi
0022- ; ,ndicate abnormal command termination.
00224 ; Each command is started by NIC by transferr
0022') , block from NIC to CTL.The first byte in thi
0022b number.
00227 0800 > ORG 80011 ;GPPROM jumps here.
00228 0800 CD6109 > CALL INIT
00229 0803 31E14 WAIT LD A,14H ;set parameters for NICI ta
00230 0805 32A80B > LD (NDAT),A
00231 0808 219DOBP LD HL,TABLE ;Starting address o
00232 OdilB 22AA0 . LD (DATADD),HL
00233 080E 211708 ' LD FIL,WAIT1
00234 0811 22BLOR LD (RETADD),HL ;normal return from
00235 0814 CVFEOA > CALL COM5 ;transfer table
00236 0817 210308 > WAITI LD HL,WAIT
00237 OdIA 2210B > LD (RETADD),HL, ;return address for
00238 0810 213C08 > LD HL,START ;following code is
00219 0820 3A9DO1 > LD A,(COMN)
00240 0823 4F LD C,A
00241 0824 3AB30B > LD A,(LASTC)
00242 0827 L9 CP C
00243 0828 FC5708 > CALL M,ERROR
00244 082I 79 LD A,C
00245 0b2C A7 AND A
00246 062D FC5708 > CALL M,ERROR
00247 OH78 CC(5708 > CALL Z,ERROR
00248 0833 0600 LD B,0
00249 0835 31, DEC A
00250 083b 4F LD C,A
0021.1 0U17 8 7 ADD A,A
00252 k183H 53 ADD A,C
002') 3 08 39 41.V LD C,A
002 4 OdiA 0 9 ADD HL,BC
00255 Oki In F:4 J1P (HI,)
00256 0oJtC CI)2f3 0 .i3 STAI'T CALL COM I
002)7 08W CI) 3 9 CALL COM2
102-b 0842 CDfrl0iOO CALL COM3
002 59 0H45 I)6, A CALl, (}M4

86

00260 0848 CDFEOA > CALL COM5
00261 084B CD170B > CALL COM6
00262 084E CDOOOO > CALL COM7
00263 0851 CDOOOO CALL COM8

***ERROR 074: Undefined symbol

87

NNW

Tektronix Z80 ASM V3.3 NIC-488-CTL Page 6

002t4 0854 CD0000 CALL COM9
***** FURRo)k 074: Undefined symbol

00266
00267 ; ERROR ROUTINE
00268
00261) ;PURPOSE -- When a fatal error occurs in nerformin
00 2 0 a call to ERROR is made. ERROR sets the SRV
00271 byte and the program counter value of the o
00272 ; to NIC.
06273
00274 ERROR WYREG CTRLO,SRVC ;Set the SRVC bit f
00275 0850 D21 IN A, (INTI)
00276 085D 57 LD
00277 085E CD5709 > CALL CTLNICI ;send status to NIC
002 78 0861 El POP HL
00279 0862 54 LD D,H
002130 0863 CI)5709 CALL CTLNIC] ;send hiqh order byte of th
00 2u1 0866 ,5 LD D,L
00282 0867 CD5709 > CALL CTLNIC1 ;send low order
002H3 086A AF XOR A ;clear SRVC
00284 08613 0380 O2T (('TRLO) ,A
00285 08bD E5 PUSH HL ;return stack to normal
00 286 086E C 34209 JP RETURN
00287
00288 ,JANUARY I,1981
00289
00290
00291
00292 ; LISLIST ROUTINE
00293
00 294 ;PURPOSE--send oit a list of listeners or a single
00295 ;ARGUMENTS-- req A = 1 => talker list
00296 0 => listener list
00L'97
00298 ;USNUS reqister A,5,DE
00299
00300 0871 47 1ISLIST LI) P,A
00301 0872 A7 4ND A
00302 0873 200F JR NZ,1,£l1
00303 0875 3A9E 0 . LD A, (NLIST)
00304 0878 A7 AND A
00305 0879 2003]1J1 NZ,Ll3
00306 087B 04 rNC 1
00307 087C 1818 JR 114
00 30, 087E 47 1,13 LD B,A
00309 Ob7F 119Fl

) > LD IE,LISlP
00318 I 0882 1803 ,R L1I

88

00311 0884 lIA50B >LIli LD DE,TALKP
00312 0887 CB10 Lii RL B
00313 0889 IA L15 LD A,(DE)
00314 088A A7 AND A
00315 088B 2808 JR Z,L12

89

TOPICS IN OPTICAL MATERIALS AND DEVICE RESEARCH -II. VOLUME 11-ETC(U)

AS ED JAN B2 T B BARRETT, H HASKEL, C E RYAN F19626-7B-C-OOB9
aNCLASSFIED RADCTR61-372-V0L-2 RL

22ffffffffffff

EEEmohEEmhEmhEI
mEEEEEmhhEEohE
EEmmhhmhhEohhEE
EEmhhEEohmhEEE

1_25U~l* 1.

T'-ktronix Z8@ ASM V3.3 NIC-488-CTL Page 7

0031b 0881D D320 OUT (DOUT),A
00317 WAITO
00318 0895 13 LI2 INC DE
00319 0896 lOFI L14 DJNZ LI5
00320 0898 C9 RET
00321
00322
00323
00324 ; BYTBLK ROUTINE
00325
00326 ;PURPOSE-- sets up registers for block read or wri
00327 r cegisters set are B,E,HIL
00328 register C should be set by the caller for
00329 ;RETURNS--the Z-flaq is set if NDAT and NDATB =0
00330
00331 0899 2AAAOR > BYTBLK LD HL,(DATADD)
00332 Vd9C 3AA80B > LD A,(NDAT)
00333 089F 57 LD D,A
00334 08A0 IE0I LD E,1
00335 08A2 A7 AND A
00336 08A3 2805 JR Z,BY1
0033/ 08A5 47 LD B,A
00338 08A6 3E01 LD A,I
00339 08A8 1806 JR BY2
00340 OdAA 3AA90B > BYI LD A,(NDATB)
00341 08AD 57 LD D,A
00342 08AE 0600 LD 8,0
00343 0880 5F BY2 LD E,A
00344 SB1 7A LD A,D
00345 08B2 A2 AND D
00346 08B3 C9 RET
00347 : : : : : : : : : : : :: : : : : : : : : : : 1 :

00348
00349 , T3OUT ROUTINE
00350
00351 ;PURPOSE--tests for TOUT3 errors on TCSY.If such a
00352 , it does a TCASY with possible loss of data.
00353 08U4 13808 T3OUT IN A,(PRTF)
00354 08dBb E601 AND TCIF
00355 08B 20FA JR NZ,T3OUT
00356 08BA)B08 T32 IN A, (PRTF)
00357 08BC E601 AND TCIP
00358 08BE 201B JR NZ,T33
00359 08C0 DlIl IN A,(INTST)
00360 08C2 E640 AND ERRBT
00361 08C4 28F4 JR Z,T32
00362 08C6 16FF LD D,OFFH
00363 08C8 CDEB08 > CALL WRIND

90

whom" ,

00364 08CB 16E6 LD D,RCST
00365 08CD CDDC08 > CALL RDIND
00366 08D0 E640 AND CABT
00367 08D2 2007 JR NZ,T33
00368 08D4 3EFC T34 LD A,TCASY

91

Tektronix Z86 ASM V3.3 NIC-488-CTL Page 8

06369 68D6 D311 OUT (CMD92),A
90370 08D8 CD4A@9 > CALL WAITX
80371 88DB C9 T33 RET
00372
60373 ; :
00374
00375
00376
00377 SUBROUTINE RDIND
00378 ; PURPOSE -- read 8292 indirect registers
00379 v ARGUMENTS -- reg D should contain the utility co
00380 REVC,REERF,RINM,RCST,RBST,RTOUT or RERM
00381
00382 08DC DBII RDIND IN A,(INTST)
66383 08DE E602 AND IBFBT
06384 08E@ 20PA JR NZ,RDIND
06385 08E2 7A LD A,D
06386 68E3 D311 OUT (CMD92),A
06387 08E5 CD4A@9 > CALL WAITX
0388 08E8 DBlI IN A,(PRT92)
00389 08EA C9 RET
0390
00391 : : ; ; : : : : : : ; : : : ; : ; ; ; : ; ; : : ;

0392
0393 SUBROUTINE WRIND
08394 ; PURPOSE -- write 8292 indirect registers or to s
0395 ; ARGUMENTS -- reg D should contain WTOUT,WEVC or
66396 , req E should contain a value to be
0397 in the indirect req (except for IAC
00398 8SEB DB1 WRIND IN A.(INTST)
06399 68ED E602 AND IBFBT
06466 88EF 20FA JR NZ,WRIND
66401 08FI 7A LD A.D
60462 08F2 D311 OUT (CMD92),A
66463 08F4 DBII WRI IN A,(INTST)
06464 88F6 E602 AND IBFBT
66465 08F8 20FA JR NZ,WRl
06466 08FA CB5A BIT 3,D
60407 08FC 2069 JR NZ,WR2 ; if IACK this is all
66408 08FE 78 LD A,E
06409 08FF D310 OUT (PRT92),A
66416 6901 DBII WR3 IN A,(INTST)
66411 6963 E602 AND IBFBT
66412 6965 20FA JR NZ,WR3
00413 6907 C9 WR2 RET
06414
06415
06416 , SUBROUTINE T2IN

I
92

'I

~ -- b

61417 PURPOSE -- check for dati~ in from the bus and to
00418 certain actions under various "time o
6419 conditions
66420 ARGUMENTS -- reg D should contain either hex 81,
60421 pindicating DJNZ time out, clear SRO or get statu

93

* 4 - * - .

Tektronix Z86 ASK V3.3 NIC-488-CTL Page 9

06422 * after a time out respectively.
66423 . -- T2 should be set to 1 if this is th
06424 , data in, indicating that the time out condition
0425 , T2IN will set T2 to 6. While T2 is 6 only DZNZ t
60426 * is used.
66427 . -- reg A returns the INTI status bits.
0428
66429 ; NOTE - Before calling T2IN, do an EXX then set
00436 0908 3ABAOB > T21N LD A,(T2); is this the first line or n
0431 090B 060 LD B,0 ;B is used in the DJNZ loop
06432 690D 58 LD EB ; E holds the status bits.
66433 090E A7 AND A
0434 996F 2827 JR Z,T23 ;not first time
06435 6911 AF XOR A ;set to not first time
66436 6912 328AOB > LD (T2),A
0437 0915 DB21 T21 IN A,(INTI)
0438 6917 83 OR E ;collect status bits
60439 6918 5F LD E,A
00446 0919 A2 AND D
66441 091A 2610 JR NZ,T26 ;if byte is in,we are done.
66442 091C DBI T25 IN A,(INTST) ;check for TOUT2 er
00443 091E E660 AND ERRBT+SRQBT
8444 6926 28F3 JR Z,T21 ;if no error then wait more
66445 6922 CB6A BIT 5,D ;if bit 5 is 0 then no SRQ
00446 ; is wrong
0447 6924 CC5708 > CALL Z,ERROR
66448 6927 CB42 BIT 0,D ;if bit 6 is @,we are not e
0449 ;so wait for SRQ
0456 6929 A2 AND 0
66451 092A 28F0 JR 2,T25
66452 092C 16FF T26 LD 0,6FFH ;clear all SPI flags
66453 092E CDEB68 > CALL WRIND
00454 8931 180C JR T24
0455 0933 A2 T22 AND 0 ;wait for SRQ or BI to be s
00456 0934 28DF JR Z,T21
00457 0936 1867 JR T24
66458 6938 DB21 T23 IN A,(INT) DJNZ or BI loop
00459 093A 83 OR E
66466 693B 5F LD E,A
66461 093C A2 AND D
68462 693D 28F9 JR ZT23
66463 093F 7B T24 LD A,E ;status bits are returned i
66464 6946 D9 EXX ;put registers in "normal" mode.
60465 6941 C9 RET
00466
66467
66468
06469 * PSEUDO-SUBROUTINE RETURN

94

*8

,II

00470 Returns subroutines to RETADD and writes a
00471 0942 2AB10B > RETURN LD HL,(RETADD)
00472 0945 Cl POP BC
00473 0946 CD5709 > CALL CTLNIC1
00474 0949 E9 JP (HL)

95

Tektronix Z80 ASH V3.3 NIC-488-CTL Page is

08475
08476
60477 * SUBROUTINE WAITX
00478 ;PURPOSE -- wait for TCI
66479 094A DB68 WAITX IN A,CPRTF)
06486 094C E601 AND TCIF
66481 094E 26FA JR NZ,WAITX
66482 6950 DB68 WXl IN A,CPRTF)
08483 0952 E601 AND TCIF
66484 6954 28FA JR Z,WX1
66485 6956 C9 RET
66486
00487 SUBROUTINE CTLNCl
06488 * writes a single byte from CTL to NIC
66489 * the byte should be in the D register
66490 0957 DB80 CTLNICl IN A, (CTRLI)
66491 6959 CB6F BIT DONEA
06492 095B 20FA JR NZ,CTLNICl
66493 095D 7A LD A,D
06494 095E D340 OUT (NICP),A
06495 6966 C9 RET
66496

96

dam

Tektronix Z89 ASK V3.3 NIC-488-CTL Page 11

00498 JANUARY 18,1981
00499 : : : : ; : : ; : : : : : : ; ; : ; ; : : : : : :

89590 ;initializaton routine -

99591 * sets up CTL to be CTL. If the SYC switch
00562 ;is off then CTL waits to be put in charge by anot
03503 ;HP9835 calculator). In this state, with the curr
00504 ;nothing. After control is transfered to CTL, it
00595 ;switch were on. Note that this initialization ro
09506 ;action by a "pre-initializer" such as GPPROM (Gen
03597 ;by Don Terpstra). If this initializer replaces G
09598 ;functions done in GPPROM should be done by INIT.
90539
09519 INIT WRREG CMD92,RSET
0511 9965 9699 LD B,9 ;wait for abort to go out,e
00512 0967 I0FE INITO DJNZ INITO
00513 WRREG YNTMR,INTM -set TCI interrupt
99514 896D 16E7 LD D,RBST
09515 096F CDDCO8 > CALL RDIND
99516 6972 E698 AND SYC8T
03517 9974 2039 JR NZ,INIT2 ;go to immediate co
99518 WRREG ADRMD,MODEI ;not ton,mode,addre
99519 WRREG ADR0l,MDA
99529 WRREG AUXMD,AXRB+CPTEN ;enable com
09521 9982 DB21 INITI IN A,(INT) ;wait here for TCT
69522 9984 E680 AND CPT
99523 9986 28FA JR Z,INITI ;if not TCT or my a
99524 9988 DB25 IN A,(CPTRG)
09525 098A FE09 CP TCT
93526 698C 2896 JR ZINITIl
09527 INIT12 WRREG AUXMD,VSCMD,INITI ;if not TCT
99528 9994 DB24 INITI1 IN A,(ADRST)
9529 9996 E602 AND TA
99539 9998 28F4 JR Z,INIT12
99531 WRREG ADR91,DTDLl ;disable talker/lis
99532 WRREG ADRMD,TON ;talk only
00533 WRREG CMD92,TCNTR ;take(receive)contr
00534 WRREG AUXMD,VSCMD ;continue command p
99535 09AA CD4A99 > CALL WAITX
99536 09AD 180C JR INIT3 ;rest of initialization as
99537 INIT2 WRREG ADROI,DTDLI
09538 WRREG ADROI,DTDL2
00539 WRREG ADRMD,TON
00549 INIT3 WRREG AUXMD,CLKRT
99541 WRREG INTI,8
99542 WRREG INT2,0
00543 WRREG ERRM,TOUT2+TOUT3
00544 09CB 16E1 LD D,WTOUT
99545 09CD 1E7F LO E,TMOUT

97

- - *

00546 09CF CDEB08 > CALL WRIND
00547 09D2 C9 RET
00548
00549 RECV ROUTINE (alias COM2)
00550

98

Z*

Tektronix Z86 ASM V3.3 NIC-488-CTL Page 12

06551 ;PURPOSE--Transfers data from GPIB to CTL (or to o
10552 ;PARAMETERS -
06553 (1) no. of listeners (other than CTL)
0554 (2) primary address-first listener
l0!35 (3 secondary address-first listener
16556 * (4) --second listener
16557 * (5) --
06558 (6) -- third listener
1559 (7)
00560 (8) Primary address-talker
10561 * (9) secondary address -talkeL
96562 (16) EOS character. (see below)
66563 * (11) no. of data bytes to receive
06564 (12) no. of 256 blocks to receive. (see bel
00565 (14) starting address for data storage.
00566
00567 ;RETURNS - If (11) and (12) are both 0,RECV return
66568 ; data in (12) and (11). If do not get EOI at
00569 * or if the amount of data received does not
00570 an error condition exists.
0571 ::::;:;;;;;;;;;;;;;;;;g
06572 69D3 3E6l COM2 LD A,l
66573 09D5 CD7108 > CALL LISLIST
00574 09D8 AF XOR A
66575 69D9 32BAOB > LD (T2),A ;get ready for T20UT
0576 WRREG DOUT,UNL
66577 WAITO
66578 09E6 AF XOR A
06579 09E7 CD7108 > CALL LISLIST
66586 09EA 6682 LD 8,AXRA+HOEND
66581 09EC 3AA79B > LD A,(EOSC)
66582 09EF A7 AND A
66583 6976 2864 JR z,COM25
66584 69F2 D327 OUT (EOSR),A
66585 69F4 6686 LD B,AXRA+HOEND+EDEOS
66586 COM25 WRREG AUXMD,B
60587 WRREG ADRMD,LON
06588 WRREG A(XMD,6
66589 OA01 3E61 LD Al
66596 SA03 32BAOB > LD (T2),A
66591 WRREG CMD92,GTSB
66592 OAOA CD4A69 > CALL WAITX
06593 OASD OE20 LD CDIN
66594 BAOF CD9908 > CALL BYTBLK
66595 6A12 2666 JR NZ,COM27
66596 6A14 3AB40B > LD A,(MAXBLK) ;If (11) and (12)
66597 OA17 5F LD E,A
66598 OA18 066 LD B,@

99

I.

00599 OA1A DD210000 COM27 LD IX,0 ;set data counter to 0
00600 OAIE D9 COM28 EXX
00601 SAlF 1601 LD D,BIM
00602 0A21 CD0809 > CALL T2IN
00603 0A24 E610 AND ENDMK

100

, -'

Tektronix Z88 ASM V3.3 NIC-488-CTL Page 13

88684 8A26 2808 JR NZ,COM29
80605 BA28 DD23 INC IX
0686 A2A EDA2 INI
88687 A2C 20FO JR NZ,COM28
08688 AZE 1D DEC E
9689 SA2F 20ED JR NZ,COM28
80618 OA31 1818 JR COM212
88611 8A33 EDA2 COM29 INI
8612 OA35 DD23 INC IX
08613 OA37 DD22B7@B> LD (COUNT),IX
08614 SA3B 3AA8@B > LD A,(NDAT) ;if 11) and (12) a
00615 OA3E 47 LD B,A
88616 OA3F 3AA90B > LD A,(NDATB)
88617 8A42 80 ADD A,B
80618 OA43 2006 JR NZ,COM212
0619 8A45 2AB70B > LD HL,(COUNT)
88620 OA48 22A90B > LD (NDATB),HL
00621 COM212 WRREG CMD92,TCSY
00622 OA4F CDB48 > CALL T3OUT
08623 WRREG AUXMD,AXRA
80624 WRREG ADRMD,TON
08625 WRREG AUXMD,FNHSK
00626 WRREG AUXMD,8
88627 OA62 C34209 > JP RETURN
08628
80629
08638 ; POLL ROUTINE (alias COM4)
88631
88632 ;PURPOSE -- wait for SRQ and do a serial poll of t
08633 ; device requesting service. This routine has been
08634 ; to match some of the ideosyncrasies of the Hamam
08635 ;PARAMETERS--
80636 (8) primary address-device to be polled
08637 , (9) secondary address
00638
88639 ;RETURNS-- the status byte is written to NICP if o
80648 0 Otherwise an error return is done.
08641 8A65 AF COM4 XOR A ;initialize the subroutine
88642 OA66 4F LD C,A
08643 OA67 32BAO8 > LD (T2),A
00644 8A6A 3E20 LD A,SRQBT ;save the initial value to
00645 for use by T21N
08646 OA6C 328908 > LD (TEMP),A
00647 COM41 WRREG DOUT,UNL
88648 WAITO
88649 WRREG DOUT,MLA
88650 WAITO
88651 OA83 79 LD A,C

101

- . ' , ,

00652 OA84 A7 AND A ;check control reg. to see

00653 OA85 2819 JR Z,C0M42
00654 0A87 180A JR C0M43
00655 C0M44 WRREG DOUT,SPE
00656 WA ITO

162

V

Tektronix Z86 ASM V3.3 NIC-488-CTL Page 14

0657 OA93 3E@1 COM43 LD A,l
60658 OA95 CD7118 > CALL LISLIST ;sends out talkeer address

00659 WRREG ADRMD,LON
0066 WRAEG AUXMD,6
00661 SAAB 3E61 COM42 LD A,I ;get ready for T2IN
00662 OAA2 32BAOB > LD (T2),A
00663 WRREG CMD92,GTSB
06664 OAA9 CD4A@9 > CALL WAITX
0665 OAAC D9 EXX ;exchange registers for T21N
00666 AAD 3AB90B > LD A, (TEMP)
00667 SABO 57 LD D,A
66668 SABI CDO809 > CALL T21N
60669 OAB4 DB20 IN A,(DIN) ;get RQS and STB for later
66670 OAB6 32B9B > LD (TEMP),A
00671 WRREG CMD92,TCSY
66672 SABD CDB488 > CALL T3OUT
00673 0AC@ 79 LD A,C
66674 OACI 3C INC A
66675 6AC2 4F LD C,A
66676 6AC3 C849 BIT l,C
66677 SAC5 2667 JR NZ,COM45
66678 OAC7 3E21 LD A,SRQBT+BIM ;second pass throug
66679 6AC9 32890B > LD (TEMP),A
06686 6ACC 18BB JR COM44
66681 OACE CB41 COM45 BIT SC
66682 OADO 2621 JR NZ,COM46
66683 SAD2 3AB9SB > LD A,(TEMP)
0684 OAD5 57 LD D,A
66685 6AD6 CD5709 > CALL CTLNICI
66686 WRREG ADRMD,TON ;do serial poll dis
66687 WRREG AUXMD,@
0688 WRREG DOUT,SPD
66689 WAITO
0696 SAEB 3E61 LD A,BIM
66691 SAED 32B90B > LD (TEMP),A
06692 IAF@ C36F6A > JP COM41 ;if necessary
06693 COM46 WRREG ADRMD,TON
66694 WRREG AUXMD,8
06695 @AFB C34209 > JP RETURN
00696
66697 , NICI ROUTINE (alias COM5)
66698
06699 ;PURPOSE --read data from NIC to CTL
06766 ;PARAMETERS--
00701 * (11) no. of bytes or
60762 (12) no. of 256 byte blocks
66763 (14) starting address for data storaqe
66764

103

7

06715 OAFE OE40 CON5 LD C,NICP
00766 6966 CD9908 > CALL BYTBLK
06707 6B83 286F JR Z,C0M53
06768 COM52 NICCTL
66769 OB11 1D DEC E

164

Tektronix Z86 ASH V3.3 NIC-488-CTL Page 15

66716 6812 28F1 JR NZ,COM52
06711 6914 C34209 > COM53 JP RETURN00712 : : : : : : ; ; : : : : : : : : : : : ; : ; : : :
66713
60714 , NICO ROUTINE (alias COM6)
80715
66716 ;PURPOSE -- write data from CTL to NIC
66717
66718 ;PARAMETERS -
00719 , (11) no. of data bytes or
06720 ; (12) no. of 256 byte blocks
00721 : (14) starting address of the data
00722 = ;= ;= ::
00723 6517 OE46 CON6 LD C,NICP
0724 OB19 CD9908 > CALL BYTBLK
06725 OBIC 280D JR Z,COM63
0726 COM62 CTLNIC
66727 6828 1D DEC E
66728 829 26F3 JR NZ,COM62
00729 6B2B C34209 > COM63 JP RETURN
06 730 ,,,,,,.,. ,;:::::::::::::;:::::::::::::::;::::::;::
66731 * JANUARY 18,1981
00732 ; ; ; : = l ; l : : : : ; : = ; ; : : : ; : ; : =
00733
00734 , SEND ROUTINE (ALIAS COM)
66735
66736 ; sends data from CTL to the GPIB
00737
00738 ;INPUT (1) no. of listeners
00739 * (2) primary address-first listener
66740 ; (3) secondary address - first listener
00741 ; (4) --second listener
00742 , (5) --
66743 , (6) --third listener
66744 ; (7)--
66745 * (16) EOS character (if EOS=@ then EOI is s
66746 according to the data count given by (16) a
66747 , non-zero ,the no. of characters sent is det
66748 ; location of the EOS character in the data s
0749 ; the amount of data as determined by (16) or
06756 0 or equal to this location. Otherwise EOI is
0751 , (11) no. of bytes to send or
06752 , (12) no. of 256 byte blocks to send. (If b
00753 ; no data is sent.
66754 : (14) sarting address of th data to be sent
66755
66756 OB2E AP COMl XOR A
66757 6B2F 32BAO8 > LD (T2),A

165

[,'

00758 WRREG DOUT,HTA
00759 WAITO
00760 WRREG DOUT,UNL
00761 WAITO
00762 OB46 AF XOR A

106

Tektronix Z89 ASM V3.3 NIC-488-CTL Page 16

00763 8B47 CD7108 > CALL LISLIST
00764 OB4A 3E81 LD A,l
00765 WB4C 32BABB > LD (T2),A
68766 WRREG CMD92,GTSB
89767 9B53 CD4A@9 > CALL WAITX
00768 0856 OE20 LD C,DOUT
00769 OB58 C09908 > CALL BYTBLK
00770 OB58 2836 JR Z,COM17
00771 985D 78 COM15 LD A,B
00772 OBSE A7 AND A
00773 985F 289B JR Z,COM16
00774 8B61 83 ADD A,E ;if B+E is 2, then this is
00775 ;providing bB .ne. 6
00776 9B62 3D DEC A
00777 0863 3D DEC A
00778 OB64 2006 JR NZ,COM16
00779 WRREG AUXMD,SEOI
00780 9B6A 1812 JR COM18
00781 086C 3AA76B > COM16 LD A,(EOSC) ;if EOSC is 9,don t
80782 086F A7 AND A

00783 B76 280C JR Z,COM18
00784 6B72 56 LD D,(HL)
00785 9873 BA CP D
00786 0874 2008 JR NZCOM18
00787 WRREG AUXMD,SEOI
00788 9B7A 0691 LD 8,1 ;send EOI and Quit.
09789 9B7C IEO1 LD E,1
00796 OB7E EDA3 COM18 OUTI
00791 88 2808 JR Z,COM19
00792 WAITO
06793 9B88 18D3 JR COM15
09794 COMI9 WAITO
00795 OB90 ID DEC E
00796 OB91 20CA JR NZ,COM15
00797 COM17 WRREG CMD92,TCSY
h0798 6B97 CDB408 > CALL T30UT
00799 B89A C34209 > COM110 JP RETURN

107

...............................

Tektronix Z80 ASM V3.3 NIC-488-CTL Page 17

00802 :::::::tt ::::t :::::::::::::::::::::::::::::::::::
00803
00804 PARAMETER TABLE
00805
00806 8B9D 00 COMN BYTE 0 ;command number
00807 OB9E 00 NLIST BYTE 0 ;no. of listeners (or can b
00808 OB9F 00 LISIP BYTE 0 ;Primarv address,lst listen
00809 OBAO 00 LISIS BYTE 0 ;secondary address,first li
00810 OBAl 00 LIS2P BYTE 0 ;--second listener
00811 OBA2 00 LIS2S BYTE 0
00812 OBA3 00 LIS3P BYTE 0 ;--third listener
00813 OBA4 00 LIS3S BYTE 0
00814 OBA5 00 TALKP BYTE 0 ;talker primary address
00815 OBA6 00 TALKS BYTE 0 ;talker secondary address
00816 OBA7 00 EOSC BYTE 0 ;EOS character (0 means non
00817 OBA8 00 NDAT BYTE 0 ;no. of data bytes to be tr
00818 OBA9 00 NDATB BYTE 0 ;no. of 256 byte blocks to
00819 OBAA 0000 DATADD WORD 0 ;starting address of the da
00820 OBAC 00 DUMIL BYTE 0
00821 OBAD 00 DUMIH BYTE 0
00822 OBAE 00 MESS BYTE 0 ;message print indicator
00823 OBAF 00 STATI BYTE 0
00824 OBBO 00 STAT2 BYTE 0
00825
00826 OTHER DATA
00827
00828 OBB1 0000 RETADD WORD 0
00829 0BB3 08 LASTC BYTE 8 ;set to the last valid comm
00830 OBB4 04 MAXBLK BYTE 4 ;set to the max. no. of 256
00831 OBB5 0000 STACKP WORD 0 ;temporary storage for stac
00832 OBB7 0000 COUNT WORD 0 ;data counter location
00833
00834 TEMPORARY STORAGE
00835
00836 OBB9 00 TEMP BYTE 0
00837 OBBA 00 T2 BYTE 0
00838

108

A t

Tektronix Zoo ASK V3.3 Symbol Table Page 18

Strings and Macros

CTLNIC - 007A N NICCTL - 09SD M NICCTL1 6997 N

WAITO -- 852 N WRREG -- 007F M

Scalars

ABORT - 9F9 ADR0l -- 0026 ADRMD -- 0024

ADRST - 624 ASRO --- 0801 ASRI --- 0002

ASR2 --- 8884 ASR3 --- 0088 ASR4 - 310

AUXMD -- 8625 AXRA --- 0080 AXRB 09A0

sIM 0081 BO 0001 BUSST 6010

BUSY --- 006 CAST - 040 CLXRT 0024

CLRST -- 0010 CMD92 -- 0011 COM ****

CO9 --- **** CPT ---- 0086 CPTEN 001

CPTRG - 0025 CTRLI -- 0080 CTRLO 0080

DIN 0020 DNAWT -- 8010 DNECL 0084

DNEWT 0001 DONE --- 0005 DOUT 0020

DTDLI 0060 DTDL2 -- 09E9 EDEOS 0804

ENDNK 0010 EOIS 0008 EOSR 0627

ERFLAG 001 ERRET -- 0040 ERPM 6010

FNHSK 0003 GTSB 0F6 IOEND 0-- 002
IACK --- 00B IBFBT -- 0002 INTl - 621

INT2 --- 8022 INT8ST - 0080 INTM --- OOAO

INTMR 0010 INTST -- 0011 K ------ 0003 V

LON 6--- 0040 MDA 0 01 MLA ---- 0021

MODEl 0001 MTA 0041 NICP --- 0040

PRT91 0020 PRT92 -- 0010 PRTP - 08

RBST - E7 RCST --- 00E6 RERF - E4

RSET 0-F2 RSTI --- 08F3 SEOI 00 6

SPD 8019 SPE ---- 0018 SRQBT 0020

SRVC --- 0082 SYCST -- 0008 SYCS --- 0008

TA ------ 0002 TCASY -- 0@FC TCIF --- 0001

TCNTR -@FA TCSY --- OOFD TCT ---- 0009

TMOUT -- 007F TON ---- 8080 TOREG -- 0010

TOST -- 8010 TOUT2 -- 0002 TOUT3 - 104

UNL ---- 003F UNT ---- 005P VSCmD 00F

WTOUT - SOEl

%TT (default) Section (@BBB)

BYl ---- @8AA BY2 ---- 08B0 BYTBLK - 0899

COmI --- 0B2E G COMilO - OB9A COMi5 -- 9B5D

COM16 -- OB6C CON17 -- 0B93 COMI8 -- 88TE

COM19 -- OB8A COM2 --- 09D3 G COM212 - OA4B

COM25 -- 09F6 COM27 -- OAlA COM28 -- AiE

COM29 -- 8A33 COM4 --- 0A65 G COM41 -- 8A6F

109

!V

C0M42 -- AAO C01M43 -- A93 C0M44 -- A89
COM45 -- ACE C01M46 -- AF3 COM5 OAFE G
C0M52 -- B05 C0M53 -- B14 COM6 OB17 G
C0M62 -- OBlE C0M63 -- B2B COMN BB9D
COUNT -- OBB7 CT10300 081E CTLNIC1 0957

lie

Tektronix Z80 ASM V3.3 Symbol Table Page 19

DATADD - OBAA DUMlH - BAD DUMIL -- OBAC

EOSC --- OBA7 ERROR -- 0857 INIT 0961

INITO -- 0967 INITI -- 6982 INITIl - 0994

INIT12 - 698E INIT2 -- 09AF INIT3 -- 0988

LAB@200 OA73 LAB2060 688F LAB2200 OA7D

LAB2300 836 LAB4200 OA80 LAB4300 O840

LAB51i0 09E@ LAB8300 082 LA89390 0BBA

LABC20 OAE5 LASTC -- 883 LII 0887

LIii --- 0884 L12 ---- 0895 L13 - 87E

L14 8896 L15 ---- 0889 LISIP-- 059F

LISIS -- OBAO LIS2P-- OBAI LIS2F -- OBA2

LIS3P-- 8BA3 LIS3S -- OBA4 LISLIST 0871

MAXBLK - O84 MESS -- BBAE NDA'2 --- OA8

NDATB -- 8BA9 NIlF288 085 NLIST -- @B9E

RDIND -- @8DC RETADD - OBBI RETURN - 0942

STACKP- OBB5 START -- 083C STATI -- OBAF

STAT2 -- 0BB0 T2 ----- OBBA T21 ---- 0915

T22 ---- 0933 T23 ---- 0938 T24 ---- 093F

T25 ---- 091C T26 ---- 092C T21N --- 0908

T32 ---- 088A T33 ---- 08DB T34 ---- 08D4

T3OUT -- 0884 TABLE -- 0B9D TALKP-- OBA5

TALKS -- O8A6 TEMP --- 0BB9 WAiT --- 0803

WAITI -- 0817 WAITX -- 094A WRI ---- 08F4

WR2 ---- 0907 wR3 ---- 0901 WRIND -- 08E8

wXl ---- 0950

COM3 Unbound Global

COM7 Unbound Global

89942 Bytes available
838 Source Lines 1213 Assembled Lines 9942 Bytes available
838 source Lines 121 Assembled Lines

2 ERRORS 2 UNDEFINED SYMBOLS
2 ERRORS 2 UNDEFINED SYMBOLS

ASM EDO
TTL;C COMPLETED

Ii

APPENDIX C -NIC Software

112

// CAMERA MAIN (JANUARY 38,1981)
// MAIN DRIVER PROGRAM FOR CAMERA CONTROL. THIS PROGRAM PERFORMS
/ VARIOUS BASIC OPERATIONS HAVING TO DO WITH CONTROLLING THE
/ HAMAMATSU Ci98 CAMERA VIA THE NIC-488/CTL INTERFACE.
/ IN ADDITION VARIOUS CONTROLLER FUNCTIONS ARE PERFORMED. EACH FUNCTION
/ IS CALLED A MODE (OF OPERATION). AT PRESENT 7 MODES HAVE BEEN
/ IMPLEMENTED AS FOLLOWS:
/
/ MODEl - RESET THE CAMERA,CONTROLLER AND LOAD THE CONTROLLER MEMORY
/ THIS OPERATION SHOULD USUALLY BE THE FIRST OPERATION ON SYSTEM
/ START AND MAY BE REPEATED ANY TIME THE USER WISHES TO
/ RESTART. THE QUERY IS -
/ PILE NAME?- (REPLY WITH THE NAME OF THE NIC FILE CONTAINING
/ THE MAIN CONTROLLER PROGRAM. (NOTE THAT AT PRESENT THIS IS STORED
/ IN RAM WHICH MUST BE RELOADED EACH TIME THE CTL IS TURNED OFF.)
/
/ MODE2 - LOAD AND EXECUTE SPECIAL "COMMANDS". AT PRESENT THE
/ CTL RECOGNIZES TWO OPTIONAL COMMANDS (NOS. 7 & 8). THESE
/ COMMANDS ARE NOT PART OF THE MAIN SEQUENCE OF CTL PROGRAMS AND
/ MUST BE LOADED BEFORE CALLING. AT PRESENT, IT IS ASSUMED THAT THE
/ CORRESPONDING NIC COMMAND PROGRAM IS IN NIC CORE. THE MODE QUERY IS-
/ COMMAND #?- (REPLY 7 OR 8)
/ FILE NAME?- (REPLY WITH THE NIC FILE TO BE LOADED)
/ (OPTIONAL SPECIAL DATA, DEPENDING ON THE COMMAND)/
/ MODE3 - TRANSFER AND TRANSFORM A TEKTRONIX 8002 TEK-HEX
/ FILE FROM COMM-STOR TO A NIC LOAD FILE. THIS MODE PROVIDES FOR
/ EASY TRANSFER OF ASSEMBLED Z-80 CODE TO NIC AND THENCE TO CTL.
/ THE MODE QUERY IS -
/ FILE NAME?- (RESPOND WITH THE COMM-STOR FILE NAME WHICH
/ ALSO BECOMES THE NIC FILE NAME)
/ NOTE- IF THE FILE DOES NOT EXIST IN COMMSTOR, THE USER WILL
/ BE INFORMED OF THIS. HE MUST THEN TYPE _Z TO GET PROGRAM CONTROL.
/
/ MODE4 - CAMERA SET-UP. USING THIS MODE, ANY OF 5 LEGITIMATE
/ CAMERA SET-UP COMMANDS GIVEN IN CAMERA TABLE ARE SENT TO THE CAMERA.
/ THE MODE QUERY IS -
/ MNEMONIC?- (REPLY WITH ONE OF THE 3 LETTER MNEMONIC
/ CODES: OUT INF XCO INT MAR
/ THE CURRENT VALUE IS THEN PRINTED AFTER WHICH THE USER MAY TYPE
/ IN A NEW VALUE OR CR TO RETAIN THE GIVEN ONE.
/ NOTE THAT AT PRESENT THE USER SHOULD NOT CHANGE OUT WHICH GIVES
/ THE FORMAT OF DATA SENT TO THE CAMERA. IT SHOULD STAY AT
/ ITS DEFAULT VALUE OF I MEANING ASCII DATA.
/
/ MODE5 - OBTAIN A "FRAME" OF VIDEO DATA (THE SIZE OF A FRAME DEPENDS
/ ON THE CAMERA TABLE VALUES FOR XCO AND INT AND ON THE COMMAND).
/ TfE MODE QUERY IS -

113

/ FILE NAME?- (REPLY WITH THE NAME OF THE NIC FILE TO RECEIVE
/ THE DATA OR WITH "PRINT" WHICH WILL CAUSE THE DATA TO BE
/ PRINTED BUT NOT STORED. IF "PRINT" IS GIVEN, THE ACTUAL FORM
/ OF THE PRINTED VIDEO DEPENDS ON THE INPUT FORMAT (INF). IF 1 OR 3,
/ THE DISPLAY IS 3 CHARACTER (000-256) FOLLOWED BY "BLANK", 16
/ PIXELS/LINE. IF 2, THE DISPLAY IS 2 CHARACTER HEX (00-FF) WITH
/ NO BLANKS AND 32 PIXELS/LINE.)
/ FRAME?- (REPLY WITH VII,VII,VID FOR 1-LINE VIDEO,A FRAME
/ STARTING AT X-COORD GOING TO HIGHER X-VALUES, A FRAME
/ STARTING AT X-COORD GOING TO LOWER X-VALUES RESPECTIVELY.
/
/ MODE6 - TRANSFER CTL MEMORY TO NIC AT 100000 IN PACKED FORM.
/ THE MODE QUERY IS -
/ HEXN- (REPLY WITH 4 HEX DIGIT ADDRESS AND A SINGLE DIGIT
/ SPECIFYING THE NO. OF 256 BYTE BLOCKS WANTED.
/ E.G. 0C004 MEANS ADDRESS COO AND 4 BLOCKS)
/ THE DATA OBTAINED MAY BE DISPLAYED BY CALLING MODE7
/
/MODE7 - DISPLAY MEMORY IN HEX FORMAT. THE REGION DDISPLAYED STARTS
/ AT 100000 AND IS NW3 WORDS LONG WHERE NW3 IS OBTAINED BY RUNNING MODE3
/ OR MODE6. THE USER CAN ALSO CHANGE NW3 HOWEVER.
/ THE WORDS ARE ASSUMED TO BE IN PACKED FORM.
/
/MODE8 - DISPLAY NIC WORDS IN HEX AND PERMIT THE USER TO CHANGE THE
/ DISPLAYED WORD (ALSO IN HEX). THIS MODE CAN BE USED TO PUT PROGRAM

114

/ PATCHES INTO CTL.
/ THE MODE QUERY IS -
/ OCT - t REPLY WITH THE STARTING ADDRESS (OCTAL) OF NIC
/ MEMORY TO BE OBSERVED AND/OR CHANGED)
/ THE PROGRAM THEN DISPLAYS THE FIRST WORD AS 5 HEX DIGITS AND
/ WAITS FOR USER RESiONSE. A SPACE (OR ANY SEQUENCE OF I TO 4
/ CHARACTERS) THEN CR WILL CAUSE NO CHANGE.
/ IF 5 HEX CHARACTERS ARE ENTERED THEY WILL REPLACE THE DISPLAYED

WORD. THE NEXT WORD WILL THEN BE DISPLAYED, ETC. TO EXIT THIS
/MODE REPLY WITH CR ONLY. THE CHANGED CODE CAN BE

LOADED INTO CTL MEMORY VIA MODE 1 WITH A NON-EXISTANT FILE
/NAME.

THE USER MAY EXIT CTLSYS VIA NICBUG TO NICSYS ANt STORE THIS PROGRAM
DATA FOR LATER USE. USE STORE NAME 100000-100632;100000:P

NOTE -- WHEN RESPONDING TO A QUERY, THE USER MAY TYPE -G TO ABORT
/THE MODE. TYPING ^Q WILL BRING THE USER TO NICBUG (IF LOADED).

VALUE ASSIGNED TO ABORT.
PARAMETER TABLE

COMN, 0
NLIST, 0

LISIP, 0
LISiS, 0
LIS2P, 0
LIS2S, 0
LIS3P, 0
LIS3S, 0
TALKP, 0
TALKS, 0
EOSC, 0
NDAT, 0
NDATB, 0
DATAL, 0
DATAH, 0
RETAL, 0
RETAH, 0
MESS, 0
DUMI, 0
DUM2, 0
/
/
/ DEFINITIONS

LISTEN=40 /OCTAL BASE FOR LISTENERS
TALK-100 /OCTAL BASE FOR TALK
CTL=l /ADDRESS ASSIGNED TO CONTROLLER
CAMERA-2 /ADDRESS ASSIGNED TO CAMERA
BASE-140 /BASE FOR CAMERA "SECONDARY ADDRESSES"
OUTF1I /OUTPUT FORMAT (1,2)

115

-,,

INF=2 /INPUT FORMAT (1,2,3)
XCUURLJ=3 /X-COORDINATE (0 - 1023)
INTERL=4 /INTERLACE (1,2,4)
HORRES=5 /HORIZONTAL RESOLUTION (1,2,3,4)
EXTAN=6 /EXTERNAL ANALOG (1=OFF)
MARK=7 /MARK(ER ON/OFF (1=ON)
VIDIN=10 /VIDEO INPUT
VIDINI=11 /VIDEO IN & INCREMENT
VIDIND=12 /VIDEO IN &DECREMENT
SLICE=13 /SLICE INPUT
SLICEI=14 /SLICE IN & INCREMENT
SLICED=15 /SLICE IN & DECREMENT
BUFFER=16 /BUFFER DISPLAY/

CTLCF=4062
CTLRD=44O64
CTLRDC=44066
CTLSK=6064
CTLWR=40 71
CTLRS=4072

/CAMERA TABLE (DEFINES CAMERA COMMANDS AND MNEMONICS)
/EACH ENTRY CONTAINS THE FOLLOWING DATA IN THE SEQUENCE SHOWN-

MNEMONIC - 3 LETTERS IN PACKED ASCII (RIGHT JUSTIFIED)
CODE - OCTAL SECONDARY ADDRESS DEFINING THE COMMAND
NNIB - NO. OF NIBBLES IN THE COMMAND DATA (0-5)
C-DATA - UP TO 5 NIBBLES OF NUMERICAL DATA (LEFT JUST.)

CTABLE, 0576564 /OUTPUT FORMAT (OUT)
BASE +OUTF
1
0200000 /DEFAULT 1
0515646 /INPUT FORMAT (INF)
BASE+INF

0200000 /DEFAULT 1
0704357 /X-COORD (XCO)
BASE +XCOO RD
3
1211000 /DEFAULT 512
0515664 /INTERLACE (INT)
BASE +1NTERL
1
0400000 /DEFAULT 2
0554162 /MARKER ON/OFF (MAR)
BASE +MARK
1
0 /DEFAULT 0

0665121 /1-LINE VIDEO (VIl)

BASE+VIDINI

116

0
0
0665151 /1-LINE VIDEO + INCREMENT (VII)
BASE+VI DINI
0
0
0665144 /1-LINE+DECREMENT (VID)
BASE+VIDIND
0
0
0426546 /BUFFER DISPLAY (BLIF)
BASE+BUFFER
0
0
300 /@ TO TERMINATE THE TABLE

START, JMS @CRLF
JMS @UNP
7
0
,TEXT % MODE?-%

RPT, JMS WEHO
A-MZ (223 /CONTROL G
ZERZ
JMP @ABORT
A-MZ ("1
ZE RZ
JMP MODE1
A-MZ ("2
ZE RZ
JMP MODE2
A-MZ ("3
ZE RZ
JMP MODE3
A-MZ ("4
ZERZ
JMP MODE4
A-MZ ("5
ZERZ
JMP MODES
A-MZ ("6
ZERZ
JMP MODE6
A-MZ ("7
ZE RZ
JMP MODE7
A-MZ ("8
JMP START
JMP MODE8

117

MODEl, JMS @GETFIL /GET THE FILE AND STORE IT IN CORE
ACCA /IF NO FILE, ASSUME IT IS ALREADY IN CORE (NIC)
JMS @ZERTAB /ZERO THE COMMAND TABLE
TABLA
/INITIALIZE THE CAMERA TABLE TO DEFAULT VALUES
JMS @SEARCH
0576564
0
0200000
1
CTABL E
1
JMS @SEARCH
0515646
0
0200000
1
CTABLE
1
JMS @SEARCH
0704357
0
1211000
3
CTABLE
1
JMS @SEARCH
0515664
0
0400000
1
CTABL E
1
JMS @SEARCH
0554162
0
0
1
CTABLE
1
CTLRS /RESET THE CTL
ZERA /FORCE CTL TO BOOT LOAD
ZERt4 SCTLC
JMS SCTL
JMS @UNPP
SCTLA
2000
0
100000
CTLCF /CLEAR

*1 118

J MP START

MODE2, JMS @GETFIL /PUJT FILE IN NIC CORE
JMP START /ERROR EXIT FROM GETFIL
JMS @CRLF

MODE21, JMS @UNP
13
0
TEXT % COMMAND#?-%
JMS @ZERTAB
TABLA
JMS @ECHO
ACCM TEMP /COMMAND SHOULD BE ASCII 267 OR 270
A-MZ (267
JMP #+3
MEMA (14 /STORE AT COO
JMP #+4
A-MZ (270
JMP MODE21 /WRONG COMMAND #
MEMA (16 /STORE AT EOO
ACCM DATAH
MEMA BUFS /SET UP COMMAND TABLE FOR FILE TRANSFER
ACCM NLIST
MEMA (5
ACCM COMN
MEMA (2 /ASSUME 2 256 BYTE BLOCKS FOR TRANSFER
ACCM NDATB
ZERM DUM1
JMS COM5
MEMA TEMP
A-MZ (267
JMP #+3
JMS @COM7
JMP #+2
JMS @COM8
JMP START

119

MODE3, JMS FILEQ
JMS @PKR
FILl

NW1, 0
JMS @CRLF
MEMA (3
A+MA NWI
ACCM NW2
JMS @UNP /SEND COMMAND TO COMM-STOR TO SEND DATA

NW2, 0
1
16300

FILl, BLOCK 2
0770000
JMS @PAKF /RECEIVE THE DATA AND PACK IT
COMSTO
100000
0
100000

NBYTES, 0
MEMAZ NBYTES
ACCM NW3
A-MA (4
EXCT AC19
JMP MODE3
JMS @TEKHEX

NW3, 0
NBY5, 0

MEMA NW3
ACCM NW4
MEMA BUFS
ACCM @OARG3
JMS @NICFIL

NW4, 0
FIl
JMP MODE31 /ERROR RETURN FROM NICFIL-NO ROOM
JMP START

MODE31, JMS @UNP
21
TEXT % NO ROOM FOR FILE%
JMP @ABORT

COMSTO, 0
TT!YRF

RDT Y
A-HZ (232 /CHECK FOR -Z (END OF FILE)

120

JMP @COMSTO
ONEM @PCOUNT
JMP @COMSTO

/ NOTE THAT SETTING PCOUNT TO I FORCES PAKF TO STOP. COMM-STOR
/ SHOULD BE CONFIGURED TO SEND EOF.
// SUBROUTINE FILEQ
/ PURPOSE -- SEND MESSAGE - FILE NAME?-
FILEQ, 0

JMS @CRLF
JMS @UNP
14
0
TEXT % FILE NAME?-%
JMP @FILEQ/

/

/
MODE4, JMS @ZERTAB

TABLA
MEMA (5
ACCM COMN /INITIALIZE COMMAND TABLE FOR DATA TRANSFER
MEMA (311 /FROM NIC TO CTL
ACCM NLIST
MEMA (14
ACCM DATAH
MONM DUMI /WILL BE SENDING NIBBLES

MODE41, JMS @UNP
13
0
TEXT % MNEMONIC?-%
JMS @PKR
FIL2

NC, 0
JMS @CRLF
ZERM FLAG
MEMA NC
A-MZ (3 /MUST HAVE 3 CHARS.
JMP MODE41
JMS @SEARCH

FIL2, 0
CODE, 0
VAL, 0
NBYTE, 0

CTABLE
FLAG, 0

MEMZ FLAG
JMP MODE41 /NON-ZERO FLAG MEANS MNEMONIC NOT FOUND
MEMAZ NBYTE

121

a. -- ,I

JMP #+2
JMP MODE42
ACCM NBY1
MEMA FIL2
ACCM MM1
JI4S @UNPF /DISPLAYS THE NIBBLES
TYPEl /TYPE1 CONVERTS 4 BIT HEX TO NIC-ASCII AND TYPES IT

NBY1, 0
7777777 /-1 FOR NIBBLES
VAL
JMS NIB /PACK(THE USER GIVEN NIBBLES
VAL 4

NBY2, 0
JMS @CRLF
MEMAZ NBY2 /IF NO BYTES, USE DEFAULT
JMP #+6
MEMA VAL
ACCM LISiP
MEMA NBYTE
ACCM NDAT
JMP MODE43
ACCM NDAT
ACCM NBY4
MEMA VAL4
ACCM LISIP
ONEM FLG4
Jl4S @SEARCH /UPDATE THE C-TABLE WITH THE NEW VALUE

MM1, 0
0

VAL4, k0

NBY4, 0
CTABLE

FLG4, 0
MODE43, JMS COMS
MODE42, ONEM COMN /SET UP COMMAND TABLE FOR CTL-CAM

ONEM NLIST
MEMA (LISTEN+CAMERA
ACCM LISiP
ME?4A CODE
ACCM LISiS
JMS COMi

MODE44, JMP START
/1FUNCTION TYPE1
/PURPOSE -- CONVERT 4 BIT HEX (LEFT JUSTIFIED) IN ACC TO 8-BIT
/ASCII AND TYPE IT.

TYPE1, 0
A+MA (260
ACCM TTEMP
M-AA (271

122

SKIP AC19
JMP #+3
MEMA (7
A+MM TTEMP
MEMA T'TEMP
JMS @TYPE
JMP @TYPE1

TTEMP, BLOCK 2

// SUBROUTINE NIB(VALA,NNIB)
/ PURPOSE -- PACKS NNIB USER GIVEN NUMBERS INTO THE LOCATION
/ GIVEN BY VALUA. UP TO 5 NIBBLES ,LEFT JUSTIFIED 0 FILL
/ MAY BE PACKED. THE NUMBER OF NIBBLES IS RETURNED IN NNIB
/ AND IS DETERMINED BY CR.
NIB, 0

JMS @PAKF
ECHO1
6
0
PENDA

NNIB, 0
MEMA NNIB
ACCM @COUNTN
MEMA (6
ACCM @WCNT
MMOA PEND
ACCM @WPNT
ZERM @WORD
MEMA PEND
AMOM @APNT
ONEM @BCNT
JMS @DEC
MEMA @NIB
ACCM TEMP
MEMA @WORD
ACCM @TEMP
MPOM NIB
MEMA NNIB
AMOM @NIB /-I BECAUSE OF CR
A-MZ (6 /IF HAVE FULL WORD, GET FROM PEND
JMP NIB3
MEMA @PEND
ACCM @TEMP

NIB3, MPOM NIB
JMP @NIB

/COMMON DEFINITION
WPNT, WPNTD
WORD, WPNTD+1
WCNT, WPNTD+2

123

- -------

COUNTN, WPNTD+3
BCNT, WPNTD+4
APNT, WPNTD+5

ECHO1, 0
JMS @ECHO
A-MZ (215
JMP @ECHO1
ONEM MPOUJNT
JMP @ECHO1

124

MODE5, JMS @ZERTAB
TABLA
MEMA T3 /SET DIVIDE ARGUMENTS
ACCM REM2
MEMA (5
ACCM REM
ACCM REMI
MEMA PAl /DEFAULT PAUSE CONSTANT
ACCM PAUC
MEMA (44 /SET POLL STATUS BYTE COUNTER
ACCM NCNT
JMS FILEQ /GET FILE NAME, MAY BE "PRINT"
JMS @PKR
Fl LNM
0
JMS @CRLF
JMS @SEARCH /GET SOME CAMERA PARAMETERS TO DETERMINE
0704357 /SPACE REQUIREMENTS
0

VALM5, 0
NBM5, 0

CTABLE
0
MEMA VALM5
ACCM VALM51
MEMA NBM5
ACCM NBM51
JMS @NIBBIN /CONVERT TO BINARY INTEGER

VALM51, 0
NBM51, 0

12
BIN, 0

JMS @SEARCH /LOOK AT INTERLACE TO GET NO. OF ELEMENTS/LINE
0515664
0

VALM52, 0
0
CTABLE
0
MEMA VALM52 /GET INTERLACE NIBBLE AND CONVERT TO INTEGER
LLSH 4
ACCM INT
ONEM N /N IS THE NO. OF LINES/FRAME; DEFAULT TO 1

MOD50, JMS @UNP
10

125

TEXT % FRAME?-%
JMS @PKR
FILM 5

JMS @CRLF
MEMA FILMS
ACCM FILM51
ZERM FLGM5
JMS @SEARCH /GET CORRESPONDING CODE

FILM51, 0
CODM5, 0

0
0
CTABLE

FLGMS, 0
MMOZ FLGM5 /FLAG=1 MEANS WRONG COMMAND
JMP 4+i2
JMP MOD50
MEMA C0D145
A-MZ (BASE+VIDIN
JMP #+2
JMP MODE51 /N=1 FOR VIDIN,ELSE CALCULATE N=
A-MZ (BASE+VIDINI
JMP MODE52 /(1024-XCOORD) *INT/4 OR
MEMA (1777 /(XCOORD+)*INT/4
APOA
A-MA BIN
JMP MODES53

MODE52, A-MZ (BASE+VIDIND
JMP MOD50
MPOA BIN

MODES3, JMS @MULTP
INT, 0

RISH 2 /DIVIDE BY 4
ACCM N

MODE51, JMS @SEARCH / FIND THE NO. OF BYTES/LINE
0515646 /INF
0

VALM53, 0
0
CTABLE
0
ZERM FACT1
MEMA VALM53
LLSH 4 /CHANGE TO 1,2 OR 3
ACCM VALM53
MEMA (4 /NO. OF BYTES/LINE=256*INT*
ACCM FACTOR /(4 OR 1 OR 4 + 0 OR 0 OR 1/16)

126

MEMA VALM53
A-MZ (2
JMP #+2
ONEM FACTOR
A-MZ. (3
JMP #+3
MEMA (20
ACCM FACT1
MEMA INT
JMS @MULTP

FACTOR, 0
ACCM NDATB1 /NO. OF 256 BYTE BLOCKS/LINE
JMS @MULTP
400
A+MA FACTI
ACCM NWORD /TOTAL NO. OF BYTES/LINE

/ IF INF IS NOT 2 OR IF THE FILE NAME IS PRI(NT), THE CAMERA
/ VIDIO IS PRINTED ONLY AND NO FILE IS CREATED ON THE DISK.
ONEM PRTFLG /1 MEANS THIS IS A "PRINT FILE"
ONEM J1
ZERM @SMODE /SET SENDF MODE SWITCH
MEMA (100
ACCM @SWCNT
ACCM @SWCNTO
MEMA VALM53
A-MZ (2
JMP MODE55
MEMA FILNM /SEE IF PRINT
A-MZ PRI /PRI=PACKED "PRI"
JMP MOD54
ONEM @SMODE
MEMA (40
ACCM @SWCNT
ACCM @SWCNT0
JMP MODE55

/ FOR A DISK FILE , WE HAVE TO ESTIMATE THE SPACE REQUIRED, OPEN THE
/ FILE ETC.
MOD54, ZERM PRTFLG

MEMA NWORD /BYTES/LINE*N*TOTAL NO. OF BYTES
ACCM #+4
MEMA N /THEY ARE REDUCED BY 2/5 IN PACKING
LASH 1 /MULT BY 2
JMS @MULTP
0
JMS @DIVDE /DIVIDE BY 5

REM, 0
APOM SIZE /MUST BE A REMAINDER OF AT LEAST 1
MEMA REM /TAKE CARE OF THE REMAINDER
A-MA (3

127

V- v----'|

SKIP AC19
MPOM SIZE
MEMA SIZE /TOTAL NO. OF PACKED WORDS
ACCM @OARG2

JMS @OPENW /CHECKS TO MAKE SURE THERE IS ROOM
MEMA @OARG2
A-MZ SIZE
SKIP AC19
JMP MODE56
JMS @UNP
10
1
TEXT % NO ROOM%
JMP MOD5E

MODE56, MEMA @OARG1
ACCM ITO /STARTING TRACK FOR THE FILE
ACCM IT
MEMA INT /NEXT GET APPROPRIATE VALUES FOR SOME LOOP
A-MZ (4 /LIMITS FOR STORING THE DATA
JMP MODE57 /AND FOR PAUSE
MEMA (17
ACCM JI
MEMA (4
ACCM Li
MEMA PA4
ACCM PAUC
JMP MODE55

MODE57, A-MZ (2
JMP MODE58
MEMA (36
ACCM J1
MEMA (2
ACCM Li
MEMA PA2
ACCM PAUC
JMP MODE55

MODE58, MEMA (74
ACCM Ji
MEMA (20
ACCM Li

MODE55, MEMA N /SET COUNTER WITH THE TOTAL NO. OF LINES
ACCM COUNT

/SET UP THE FIXED PORTION OF THE COMMAND TABLE

MEMA (14
ACCM DATAH
MEMA (TALK+CAMERA
ACCM TALKP
ONEM DUMI /DATA IS PACKED UNLESS PRINTED
MMOZ PRTFLG

128

ZERM DUMi
MODE5I, ZERM NBYT5 /I LOOP

MEMA Ji
ACCM J

MODE5J, ONEM COMN /SEND
ONEM NLIST
ZERM NDAT
ZERM NDATB
MEMA CODM5
ACCM LISiS
MEMA (LISTEN+CAMERA
ACCM LISiP
JMS COMi
MEt4A (4 /POLL
ACCM COMN
JMS COM4
MEMA (2 /RECV
ACCM COMN
ZERM NLIST
MEMA NDATB1
ACCM NDATB
JMS @PAUSE

PAUC, 0
JMS COt42
MEMA (6 /NICO
ACCM COMN
MEMA BUF'S

129

ACCM NLIST
MEMA J
A-MZ Jl
MONM NLIST /DON'T RESET COM6 EXCEPT WEEN J=l
JMS COM6
MEMA NWORD
A+MM NBYT5 /ACCUMULATE TOTAL NO. OF BYTES
MMOMZ COUNT
JMP #+2
JMP MOD5JI
MMOMZ J
JMP MODESJ
MEMA (4
ACCM NTRCK
JMP MOD5J2

MOD5J1, MEMA NBYT5
JMS @MULTP
2
JMS @DIVDE /DIVIDE BY 5

REM1, 0
APOM SUM /MUST HAVE A REMAINDER
MEMA REMI
A-MA (3
SKIP AC19
MPOM SUM
ZERA /GET READY FOR DIVIDE
TACMQ
MEMA SUM
JMS @DIVDE

REM2, 0
ACCM NTRCK
MEMZ REM2
MPOM NTRCK

MOD5J2, MMOZ PRTFLG /PRINT OR STORE?
JMP MOD5J3
JMS @UNPF
SENDFA

NWORD, 0
1 /DATA IS NOT PACKED FOR PRINT
10000
JMP MOD5J4

MOD5J3, MEMA NTRCK /STORE THE PACKED DATA ON NTRCKS TRACKS
ACCM K
MEMA BUFS /POINTS TO START OF BUFFER AREA
ACCM ISTART

MOD5K, JMS @WRITE /START OF K LOOP
IT, 0
TRKSZ, 3000
ISTART, 0

MPOM IT

130

MEMA TRKSZ
A+MM ISTART
MMOMZ K
JMP MOD5K

MOD5J4, MEMZ COUNT
JMP MODE5I /END OF I-LOOP
MMOZ PRTFLG /IF THIS IS A PRINT FLAG GOTO THE END
JMP #+2
JMP MOD5E
MEMA @SYSTRT /SAVE TO RESTORE
ACCM TEMP
MEMA INT /CLOSE THE FILE
RLSH 3 /THE INTERLACE NO. IS STORED AS THE 2 HIGH
A+MA N /ORDER BITS OF THE PSA PORTION OP THE
ACCM @SYSTRT /DIRECTORY ENTRY; THE NO. OF LINES
MEMA ITO /IN THE LOW ORDER BITS
ACCM @OARG1
MEMA IT
A-MA ITO
JMS @MULTP
3000
ACCM @OARG2
MEMA BUFS
ACCM @OARG3
JMS @CLOSE

FILNM, 0
0
MEMA TEMP
ACCM @SYSTRT

MOD5E, JMP START
LIST

MODE6, JMS @UNP
5
0
TEXT %HEXN-%
JMS NIB
N

NBY6, 0
MEMA NBY6
A-MZ (5
JMP MODE6 /MUJST GET 4 NIBBLES FOR ADDRESS AND
MEMA N /1 FOR NO. OF BLOCKS (EG. OCOOl)
ANDA (7
ACCM NDATB
MEMA N
RLSH 4 /GET LOW ADDRESS
ANDA (377 /MASK IT
ACCM DATAL /STORE FOR TRANSMISSION

131

------7 9'

MEMA N
RLSH 14 /GET HIGH ADDRESS
ANDA (377
ACCM DATAH
ZERM DUMI
MEMA BUFS
ACCM NLIST

MEMA (6
ACCM COMN
JMS COM6

MEMA NBYT1 /TRANSFER NO. OF BYTES RECEIVED

ACCM NBY5 /FOR POSSIBLE MODE 7 CALL.
JMP START/

MODE7, ONEM @SMODE /SET UP FOR SENDF

MEMA (20
ACCM @SWCNT
ACCM @SWCNT0
JMS @CRLF
JMS @CRLF
MEMA NBY5 /NO. OF BYTES
ACCM MOD71

JMS @UNPF
SENDFA

MOD71, 0

0
100000
JMS @CRLF
JMS @CRLF
JMP START

/
MODE8, JMS @UNP

4
0
TEXT %OCT-%
JMS @OCT /PACK OCTAL ADDRESS INTO MOD8A
MODSA
MMOA MOD8A /STORE POINTER FOR CHANGE WORDS
ACCM COUNT
ZERM J /FOR COUNTING WORDS

MOD81, JMS @CRLF
JMS @UNPF /DISPLAY CONTENTS OF NEXT WORD
TYPE1 /AS 5 HEX CHARACTERS
5
3777777

MOD8A, 0
MONM MOD8A /CAUSES UNPF TO KEEP GOING WITHOUT
MEMA (240 /REINITIALIZING

JMS @TYPE /PUT IN SPACE

132

..- " - " ' ' 5.

JMS NIB /COLLECT THE NIBBLES
N

NBY8, 0
MPOM COUNT
MPOM J
MEMAZ NBY8 /0 NIBBLES MEANS EXIT
Z ERZ
JMP MOD8E
A-MZ (5 /1-4 NIBS MEANS NO CHANGE
JMP MOD81
MEMA N
ACCM @COUNT
JMP MOD81

MOD8E, MEMA J
JMS @MLJLTP
5
RASH 1 /NO. OF BYTES=5/2 *NO. OF WORDS

ACCM NBY5
JMP START

/SCRATCH STORAGE
TEMP, 0
N, 0
FIL245, 0
NDATB1, 0
PRTFLG, 0
1i, 0
SIZE, 0
ITO, 0
Li, 0
COUNT, 0
NBYT5, 0
J, 0
NTRCK, 0
FACTi, 0
sum, 0
K, 0

133

IIIII COMMAND SUBROUTINES /////////////////
/
// SUBROUTINE SEND (ALIAS COMI)
/ REVISION -- NOVEMBER 25,1980
/ AUTHOR -- BARRETT,TB
/ PURPOSE -- SEND DATA FROM CTL TO LISTENER(S)
/ PARAMETERS USED -- NONE PARAMETERS IN THE PARAMETER
/ TABLE ARE USED ONLY BY CTL-SEND

*1500
COMI, 0

JMS @WCTL /TRANSFER TABLE VALUES
TABLA
24
JMS OMONITOR /CATCH TABLE TRANSFER BYTE FROM COM5
JMS @MONITOR /WAIT UNTIL CTL IS DONE
JMP @COMI

// SUBROUTINE RECV (ALIAS COM2)
/ REVISION -- NOVEMBER 25,1980
/ AUTHOR -- BARRETT,TB
/ PURPUSE -- TRANSFER DATA FROM TALKER TO CTL
/ PARAMETERS USED -- NONE

COM2, 0
JMS OWCTL
TABLA
24
JMS @MONITOR
JMS @MONITOR
JMP @COM2/

/
//SUBROUTINE POLL (ALIAS COM4)
/ REVISION -- JANUARY 19,1981
/ AUTHOR -- BARPETT,TB
/ PURPOSE -- CONDUCT A SERIAL POLL (THE STATUS BYTE IS TYPED)
/ PARAMETERS -- NONE
COM4, 0

JMS @WCTL
TABLA
24
JMS @MONITOR
JMS @MONITOR
ACCM TEMP /STORE STATUS
RASH 4 /GET READY FOR FIRST HEX DIGIT

JMS @HEXT

MEMA TEMP
JMS @HEXT

134

MMOMZ NCNT
JMP COM4E

MEMA (44
ACCM NCNT
JMS @CRLF
JMS @MONITOR

COM4E, JMP @COM4
NCNT, 0

/
// SUBROUTINE NICI (ALIAS COM5)
/ REVISION -- DECEMBER 29,1980
/ AUTHOR -- BARRETTTB
/ PURPOSE -- WRITE DATA FROM NIC TO CTL
/ PARAMETERS USED --

/ (1) "I" FOR IMMEDIATE DATA (THE DATA TO SEND IS IN TABLE
/ LOCATIONS 2 => 10), OR THE STARTING ADDRESS IN NIC OF THE

/BLOCK OF DATA TO BE SENT (CAN NOT BE "I" = 311 OCTAL).
/ (11) NO.OF DATA WORDS (1 BYTE/WORD) TO BE SENT OR
/ (12) NO. OF 256 BYTE BLOCKS TO BE TRANSFERRED IF (11)=0.
/ (18) -1 => DATA IS PACKED NIBBLES (WHEN UNPACKING ADD OCTAL 60
/ TO TRANSFORM TO ASCII NUMBER.
/ 0 => DATA IS PACKED
/ 1 => DATA IS UNPACKED (5BYTES IN 2 WORDS)
/
/ NOTE -- THE STARTING ADDRESS IN (1) CAN BE -1 TO INDICATE THAT
/ THE UNPACKING PROCESS SHOULD CONTINUE FROM WHERE IT LEFT
/ OFF ON THE PREVIOUS CALL TO UNPF.

COM5, 0
JMS @WCTL
TABLA
24
JMS @MONITOR
MEMA DUMI
ACCM FLAG5
ACCM SCTLC
MEMA NLIST /IT IS IMMEDIATE MODE ?
A-MZ ("I
JMP #+2
MEMA (TABLA+2
ACCM STADD5
MEMAZ NDAT
JMP #+2
JMP #+3
ACCM NBYTE5
JMP COM51
MEMAZ NDATB

135

ZERZ
JMP C0M53
ACCM COUNTS /DO ADD INSTEAD OF MULT.

136

Z ERA
A+MA (400
MMOMZ COUNTS
JMP #-2
ACCM NBYTE5

COM51, JMS @UNPF
SCTL

NBYTE5, 0
FLAG5, 0
STADD5, 0
COM53, CTLCF

JMS @MONITOR
JMP @COM5/I///

/
//SUB ROUTINE NICO (ALIAS COM6)
/ REVISION -- DECEMBER 29,1980
/ AUTHOR -- BARRETT,TB
/ PURPOSE -READ DATA FROM CTL TO NIC
/ PARAMETERS USED --
/ (1) "I" FOR DATA TO BE STORED IN TABLE LOCATIONS 2 => 10,
/ OR STARTING ADDRESS FOR DATA STORAGE.
/ -1 MEANS USE LAST ADDRESS FROM PRIOR RUN
/ (11) NO. OF DATA WORDS TO BE TRANSFERRED OR
/ (12) NO. OF 256 BYTE BLOCKS TO BE TRANSFERRED IF (11)=0.
/ (18) 1 => DO NOT PACK THE DATA
/ 0 => PACK THE DATA (5 BYTES/2 WORDS)
COM6, 0

JMS @WCTL
TABLA
24
JMS @MONITOR
MEMA DUMI
ACCM FLAG6
MEMA NLIST
A-MZ ("I
JMP #+2
MEMA (TABLA+2
ACCM STADD6
MEMAZ NDAT
JMP #+2
JMP #+3
ACCM NBYT1
JMP COM61 /NOT 0
MEMAZ NDATB
ZERZ
JMP COM63 /NOTHING TO TRANSFER
ACCM COUNTS
ZERA
A+MA (400

137

wf

MM'OMZ COUNTS
JMP #-2
ACCM NBYT1

COM61, JMS @PAKF
MO NIT A

NBYT1, 0
FLAG6, 0
STADD6, 0

0
C0M63, JMS @MONITOR

JMP @COM6

/SUBROUTINE SCTL
/PURPOSE -- SEND BYTE TO CTL
/THERE ARE 2 MODES OF OPERATION SET BY SCTLC. IF SCTLC=-1
/THE BYTE IS SENT AS ASCII (60H IS ADDED TO ACC), OTHERWISE
/IT IS SENT WITH NO CHANGE. SCTL MAY BE ABORTED
/BY TYPING ANY CHARACTER ON THE TTY IN CASE THE CTL
/GETS HUNG.
*1650
SCTL, 0

MPOZ SCTLC
ZERZ
A+MA (60
CTLWR

SCI, CTLSK
JMP SC2
JMP @SCTJ

SC2, TTYRF
imp Sdl
JMP @ABORT

SCTLC, 0

138

/SCRATCH STORAGE
COUNTS, 0

/ADDRESSES
TABLA=0
SENDFA=4242
SCTLA=1650
M0NITA=2123
WPNTD=3414
PENDA=1770

/EXTERNALS
MONITOR, MONITA
HEXT, 2330
ECHO, 2257
OPENW, 2420
OPENR, 2432
CLOSE, 2451
WRITE, 2470
READD, 2511
PRTOCT, 2605
UNP, 2650
TYPE, 2731
CRLF, 2736
UNPF, 2750
PAKF, 3074
PKR, 3240
DEC, 3310
NIBBIN, 3470
TEKHEX, 3565
NICFIL, 4010
SEARCH, 4070
ZERTAB, 4160
MULTP, 4175
DIVDE, 4213
WCTL, 2136
GETFIL, 4313
PAUSE, 4362
OCT, 4371
/ DEFINITIONS AND COMMON
OARGI, 7770
OARG2, 7771
OARG3, 7772
PEND, PENDA /PAGE END FOR SCRATCH STORAGE
BUFS, 100000
SMODE, SENDFA+47
SWCNT, SENDFA+46
SWCNTO, SENDFA+50
ABORT, 4700
SYSTRT, 7600

139

- .,------ - -- .-d- .

PCQUNT, 3223
/ CONSTANTS
PRI, 606251
T3, 3000
PAI, 400 /PAUSE CONSTANTS
PA2, 1000
PA4, 100000

140

/I/IIII I S E R V I C E S U B R 0 U T I N E S I IIII
/
// FUNCTION ERROR
/ REVISION -- JANUARY 2271981
/ AUTHOR -- BARRETT,TB
/PURPOSE -- WHEN CTL-ERROR IS JUMPED TO A SERVICE BIT IS SET. WHEN
/ MONITOR FINDS THIS , IT JUMPS TO ERROR WHICH PRINTS
/ OUT SOME ERROR MESSAGES AS FOLLOWS-
/ (1) THE NIC COMMAND BEING EXECUTED
/ (2) A CTL ERROR STATUS BYTE (USUALLY CONTENTS
/ OF THE A REGISTER)
/ (3) THE PROGRAM COUNTER OF NIC AT THE ERROR
/ (4) THE PROGRAM COUNTER OF CTL AT THE ERROR
/
/ NOTE THAT ON ENTRY TO ERROR ACC IS ASSUMED TO HOLD THE
/ ERROR STATUS BYTE

CTLCF=4062
CTLRD=44064
CTLRDC-44066
CTLSK=6064
CTLWR=4071
CTLRS=4072

*2020
ERROR, 0

ACCM STAT /STORE STATUS
JMS @UNP
14
0
TEXT %ERROR IN COM%
MEMA @TABLE
A+MA (260 /COMMAND NO. TO ASII
JMS @TYPE
JMS @UNP
23
0
TEXT %,STATUS BYTE (HEX)-%

MEMA STAT
RASH 4 /CHANGE TO HEX ASCII
JMS HEXT
MEMA STAT
JMS HEXT
JMS @CRLF
JMS @CRLF
JMS @UNP
14
0

TEXT *NIC PC(OCT)=%
MEMA ERROR
AMOA
JMS @PRTOCT

141

'Ir

. -" . - " ~i4

JMS @CRLF
JMS OUNP
14
0
TEXT %CTL PC(HEX)=%
JMS RCTL
ACCM TEMP
RASH 4
JMS HEXT
MEMA TEMP
JMS HEXT
JMS RCTL /GET LOW ORDER ADDRESS
ACCM TEMP
RASH 4
JMS HEXT
MEMA TEMP
JMS HEXT
JMS @CRLF
JMS RCTL /GET NORMAL RETURN BYTE
JMP @SYSTRT /RETURN TO NIC MAIN MONITOR ON ERROR

STAT, 0
TEMP, 0

/
//FUNCTION MONITOR
/ REVISION -- JANUARY 22,1981
/ AUTHOR -- BARRETT,TB
/ PURPOSE -- "MONITOR" INPUT FROM CTL. IT READS DATA FROM CTL
/ AND JUMPS TO ERROR IF SRVC BIT IS SET. OTHERWISE IT
/ RETURNS THE BYTE READ IN ACC.
/

SRVC=400
MONITOR, 0
MONi, CTLSK

JMP MON2
CTLRDC
ANDZ (SRVC
JMS ERROR
JMP @MONITOR

MON2, TTYRF
JMP MONI
RDT Y
JMP @ABORT

/
//SUBROUTINE WCTL(STADD,NBYTES)
/ REVISION -- JANUARY 22,1981
/ AUTHOR -- BARRETT,TB
/ PURPOSE -- TRANSFER NBYTES OF DATA FROM NIC MEMORY STARTING AT
/ ADDRESS STADD TO CTL

142

/PARAMETERS-
/STADD STARTING ADDRESS OF DATA BLOCK IN NIC
/NBYTES SIZE OF DATA BLOCK IN BYTES (1 BYTE/NIC WORD

WCTL, 0
ZERM @SCTLC
MMA @WCTL
ACCM POINT /POINTS TO DATA BLOCK
MPOM WCTL /GET COUNT
MEMA @WCTL
ACCM COUNT
MPOM WCTL /SET FOR RETURN FROM WCTL

WCTL1, MEMA @POINT /GET NEXT DATUM
JMS @SCTL
MPOM POINT
MMOMZ COUNT
JMP WCTL1
CTLCF /CLEAR DONE ON LAST WRITE
JMP @WCTL

POINT, 0
COUNT, 0

RCTL, 0
CTLSK
imp #-i
CTLRDC
JMP @RCTL

143

//PROGRAM CTLTST
/REVISION -- JANUARY 22,1981
/AUTHOR -- BARRETT,TB &TERPSTRA,D (U. OF FLORIDA)

/PURPOSE READS CTL "REGISTERS" (RHH)
/ WRITES CTL "REGISTERS" (WHH)
/ CLEARS CTL (C)

/WHERE HH IS 2 HEX CHARACTERS REPRESENTING
/THE REGISTER (SEE WRITEUP ON NIC-488/CTL)

/DEFINITrIONS FOR I/O COMMANDS TO CTL

*2170

START, JMS ECHO
ZERM @SCTLC
ONEM CC /CC IS USED TO HOLD READ WRITE BIT
ZERM TBIT
A-MZ ("R
ZERZ
JMP SEND
ZERM CC
A-MZ ("W
ZERZ
JMP SEND
A-MZ (C
ZERZ
JMP RESET

ERR, MEMA (?/ILLEGAL CHAR
JMS @TYPE
JMP START

SEND, MEMA CC
LLSH 3
ACCM CC

SEND1, JMS ECHO
JMS VALID /NORMAL RETURN ONLY IF VALID HEX CHAR
LLSH 4
ACCM SCHAR
JMS ECHO
JMS VALID /8 BITS IS 2 HEX CHARS
A+MMA SCHAR
A+MA CC /ADD READ WRITE BIT
JMS @SCTL
CTLC F
MEMZ CC
JMP SEND2
MEMZ TBIT
JMP SEND2
ONEM TBIT

144- S1

MEMZ SCHAR /IF WOO THEN SEND DATA TO CTEJ
JMP #+5
JMS @WCTL
100000
2000
JMP @CALLS
MEMA ("-

JMS @TYPE
JMP SENDI

SEND2, ACCM SSIG
RASH 4 /SHIFT FOR HIGH NIB
JMS HEXT /CONVERT IT TO ASCII
MEMA SSIG
JMS HEXT /CONVERT 2ND CHAR
JMS @CRLF
JMP START

SCHAR, 0
SSIG, 0
cc, 0
TBIT, 0

ECHO, 0
JMS READ
A-MZ (221 /-Q
ZERZ
JMP @ABORT
A-MZ (207 /^G
Z ERZ
JMP @CALLS
JMS @TYPE
JMP @ECHO

READ, 0
TT YR F

RDTT Y
JMP @READ

RESET, CTLRS
JMP START

VALID, 0 /PUTS OCTAL EQUIVALENT FOR HEX ASCII IN4 ACC
ACCM VC /LEGAL CHARS ARE 260-272 (DIGITS)
A-MA (260 /AND 301-310 (A-F)
EXCT AC19
JMP EMR /< 0

145

MEMA VC
A-MA (272
EXCT AC19
JMP NUM /CHAR IS LEGAL
MEMA VC
A-MA (300
EXCT AC19
JMP ERR /< A
MEMA VC
A-MA (310
SKIP AC19
JMP ERR /> F

LETTER, MEMA VC /ITS A LETTER
A-MA (267 /A-300+11
JMP @VALID

NUM, MEMA VC
A-MA ("0 /STRIP OFF BIAS
JMP @VALID
vC, 0

HEXT, 0 /MASKS AND TYPES AS HEX
ACCM HT /SAVE ACC
MEMA HC1 /INITIALIZE POINTER
ACCM HP
MEMA HT /RECALL ACC
ZERM HC /COUNTER
ANDA K17 /MASK LOWER NIBBLE
A-MZ HC /MATCH COUNTER ?
ZERZ
JMP [ITYPE
MPOM HC /NO, BUMP COUNTER
MPOM HP
Jmp #-5

HTYPE, MEMA @HP
JMS @TYPE
JMP @HEXT

/TEMP STORAGE AND TABLE
K17, 17
HC' 0
HC1, HTOP
HP, 0
HiT, 0
HTOP, 260

261
262
263
264
265

146

2 66
267
270
271
301
302
303
304
305
306/

/ EXTERNALS (INCLUDES COMMON AND TABLES)
UNP, 2650
CRLF, 2736
PRTOCT, 2605
SYSTRT, 7600
TYPE, 2731
ABORT, 4700
CALLS, 71
TABLE, 0
SCTL, 1650
SCTLC, 1663

147

| • ..

// I/O SUBROUTINES OPENW,OPENR,CLOSE,WRITE,READD
1/SUBROUTINE OPENW

/ REVISION -- JANUARY 26,1981
/ AUTHOR - BARRETT,TB
/ PURPOSE -- OPENS A FILE BY LOCATING THE NEXT AVAILABLE
/ TRACK AND AMOUNT OF SPACE AAILABLE.
/

/ PARAMETERS - NONE. TRACK AND SPACE ARE RETURNED IN OARG1
/ (7770) AND OARG2 (7771) RESPECTIVELY,IF OARG2=0.

IF OARG2 IS SET TO THE NO. OF WORS IN THE FILE,OPENW
/ NOTE -- SET OARGI TO 0 BEFORE CALLING.

WILL FIND THE FIRST AVAILABLE SPACE.
*2420
OPENW, 0

JMS DIRFIN
MONM @DISOLV
JMS 0DIRFUN
1
2
NOFIL /POINTS TO A VALUE OF 0
ACCA
JMS) IR)UT
JM? OOPENW

/ 5(;VRO UTIN .,lFNRFI.NAM,
kHVIS[)N -- DLCEMl - 10,1980
A. THOR -- BARRETI' .TB
P'*w)r;;E -- jPiUN A FILE FUR READING BY RETURNING THE STARTING
Tt<ACK.-ILE 51ZE AND : -ATION IN CORE FOR
STOkANG (AS- GIVEN RV HE DIRECTORY)

A tI&UML NTS --
-IINAM - 2 w)RD PACKED FILE NAME OF THE FILE TO BE OPENNED.

SL OCATIONS UARGI,OArG2,OARG3 CONTAIN TRACK,SIZE AND CORE LOCATION FOR
Tt;rE FILE RESPECTIVELY. IF THE FILE IS NOT FOUND, OARGI CONTAINS -1.

OPENH, 0
MEMA 4OP2NR /FILENAME
ACCM FILNM
MPOM oPENR
MEMA OOPENR
ACCM FILNM+l
MPOM OPENR /SET RETURN ADDRESS
JMS DIRFIN
JMS (DIRFUN

2
F IL NM
MONM OOARGI /FILE DOES NOT EXIST
JMS DIROUT /RESTORE
JMP OOPENR

/

14d

I.

// SUBROUTINE CLOSE(FILNAM)
/ PURPOSE -- ADD A FILE TO THE DIRECTORY
/ PARAMETERS -
/ FILNAM - 6 CHAR. (PACKED FORM) FILE NAME (2 WORDS)
/ CONTROL RETURNS AFTER THE FILE NAME
/ BEFORE CALLING PUT THE STARTING TRACK IN 7770 AND THE
/ FILE SIZE (WORDS) IN 7771. THE CODE ADDRESS CAN BE PUT INTO

OARG3 AND THE STARTING ADDRESS IN SYSTRT.
CLOSE, 0

MEMA @CLOSE /TRANSFER FILENAME
ACCM FILNM
MPOM CLOSE
MEMA @CLOSE
ACCM FILNM+I
MPOM CLOSE
JMS DIRFIN
JMS @DIRFUN
1
1
FILNM
ACCA
JMS DIROUT
JMP @CLOSE

/
// SUBROUTINE WRITE(IT,SIZE,ISTART)
/ PURPOSE - SIMPLE WRITE TO DISK USING DEMON II DISK
/ PARAMETERS -

/ IT - STARTING TRACK
/ SIZE - NO. PF WORDS IN BUFFER (STARTS AT ISTART)

ISTART - STARTING ADDRESS OF BLOCK TO TRANSFER.
WRITE, 0

MEMA @WRITE
A+MA DNO
ACCM IT
MPOM WRITE
MEMA @WRITE
ACCM SIZE
MPOM WRITE
MEMA @WRITE
ACCM ISTART
MPOM WRITE /RETURN ADDRESS
JMS @DISK

IT, 0
SIZE, 0
ISTART, 0
JMP @WRITE
DNO, 100000

// SUBROUTINE READD(IT,SIZE)
/ REVISION -- NOVEMBER 29,1980

149

. nln m* i .. " i .-.. , - = * . . .

/AUTHOR -- BARRETT,TB
/PURPOSE -- READ TRACK IT OF SIZE WORDS INTO BUFFER

/ STARTIN.G AT 100000. NOTE THAT IF SIZE IS GREATER
/ THAN A TRACK, MORE THAN 1 TRACK WILL BE READ.

READD, 0
MEMA @READD
A+MA DNO /ADD THE DISK NO.
ACCM IT
MPOM READD
MEMA @READD
ACCM SIZZ
MPOM READD /SET RETURN
ZERA /SIGNALS READ
JMS @DISK

IT, 0
SIZZ, 0

100000
JMP @READD

DIRFIN, 0 /READ OUT 3000-7600,READ IN DIRFUN
ONEA
JMS @DISK
100001
4 600
3000
ZERMA @DERRF
JMS @DISK
10000 7
600
7000
ACCA
ZERM @DEVDET
JMP @DIRFIN

DIROUT, 0 /READ BACK 3000-7600
ZERMA @DERRF
JMS @DISK
100001
4600
3000
ACC A
JMP @DIROUT

/DEMON II REFERENCES
DIRFUN, 7000
DISK, 7612
DERRF, 7704
DISOLV, 7751
DEVOET, 7764

150

QARGI, 7770
OARG2, 7771
OARG3, 7772
/ SCRATCH STORAGE
FILNM, BLOCK 2

NOFIL, 0

151

1/FUNCTION PRTOCT(X)
/REVISION -- JANUARY 22,1981
/AUTHOR -- BARRETT,TB
/PURPOSE -- PRINT THE OCTAL VALUE OF THE CONTENTS OF ACC

* 2605
PRTOCT, 0

LLSH 2
ACCM TEMP
ANDA (3
A+MA (260
JMS TYPE
MEMA (7 /SET COUNTER
ACCM COUNT

PRTO1, MMOMZ COUNT
JMP #+2
JMP PRT02
MEMA TEMP
LLSH 3
ACCM TEMP
ANDA (7
A+MA (260
JMS TYPE
JMP PRT01

PRT02, MEMA (215
JMS TYPE
MEMA (212
JMS TYPE
JMP @PRTOCT

152

// SUBROUTIN. UNP(NC,INDIC,TEXT)
/REVISI,L' --NOVEMBER 22,1980
/AUTHOR -- BARRETT,TB
/PURPOSE -- UNPAK PACKED ASCII AND SENDS TO TTY FOR PRINTING.
/ AN OPTIONAL CR/LF IS SENT ALSO.
/
/PARAMETERS --
/ NC NO. OF CHARACTERS IN THE PACKED TEXT. IF 0, THE
/ TEXT IS ASSUMED TO BE TERMINATED WITH 77 (%) AND NC IS
/ RETURNED AS THE NO. OF TEXT CHARACTERS (NOT INCLUDING %)
/ INDIC 0 => NO CR/LF, 1 => CR/LF AT END OF TEXT.
/ TEXT THE PACKED TEXT./
*2650
UNP ,0

MEMA UNP /STORE ADDRESS OF NC
ACCM NC
MPOM UNP /STORE INDIC
MEMA @UNP
ACCM INDIC
ONEM INDIX /SET PRINT/NOPRINT INDICATOR
ZERM NCC /SET CHARACTER COUNTER TO 0
ONEM COUNT /INITIALIZE 1,2,3 COUNTER

LOOP, MMOMZ COUNT /DECREMENT COUNTER. IF 0 GET NEXT WORD
JMP Li /IF NOT 0, TYPE CHARATER
MEMA (3 /REINITIALIZE COUNTER
ACCM COUNT
MPOM UNP /POINT TO NEXT WORD IN TEXT
MEMA @UNP /GET WORD AND SHIFT IT
LLSH 8
ACCM WORD /STORE IT FOR FURTHWR WORK

LI, ANDA (77 /MASK 6 LSDS
A-MZ (77 /CHECK FOR END OF TEXT
JMP #+2
JMP END
MEMZ @NC
JMP #+2
JMP L3
ACCM TEMP
MEMA @NC
A-MZ NCC /CHECK TO SEE IF NC CHARS. SENT
JMP #+2
ZERM INDIX /IF INDIX IS 0, CHARACTERS ARE NOT PRINTED
MEMA TEMP

L3, MEMZ INDIX /IF 0, DON'T PRINT
JMP #+2
JMP #+4
MPOM NCC
A+MA (240 /CONVERT TO UNPACKED ASCII
JMS TYPE

153

............................

MEMA WORD
LLSH 6 /SHIFT &STORE FOR NEXT CHAR.
ACCM WORD
JMP LOOP /GET NEXT CHAR.

END, MEMAZ INDIC
JMS CRLF
MPOM UNP /SET FOR RETURN
MEMA NCC
ACCM @NC /RETURN CHAR. COUNT
JMP @UNP

NCC, 0
NC, 0
INDIX, 0/
////// SUBROUTINE TYPE ///
TYPE, 0

TTYPF
JMP #-i
PRTTY
JMP @TYPE/

///// SUBROUTINE CRLF /III
CRLF, 0

MEMA (212
JMS TYPE
MEMA (215
JMS TYPE
JMS TYPE
JMP @CRLF

154

- --.

// SUBROUTINE UNPF(SENDF,NBYTESFLAG,STARTA)
/ REVISION -- DECMEBER 24,1980
/ AUTHOR -- BARRETT,TB
/ PURPOSE -- TRANSFER DATA FROM CORE TO A DESTINATION SPECIFIED BY
/ SENDF. THE DATA MAY BE UNPACKED IN THE PROCESS.
/
/ PARAMETERS -
/ SENDF - ENTRY POINT FOR ACCEPTING A WORD IN ACC (E.G. TYPE)
/ NBYTES - NO. OF BYTES TO BE TRANSFERRED. (FOR PACKED DATA
/ THERE ARE 2.5 BYTES/NIC WORD)
/ FLAG - 1 -> DO NOT UNPACK
/ 8 -> UNPACK

/ -1 > UNNIBBLE (5 NIBBLES/WORD)
/ STARTA - STARTING ADDRESS AT WHICH TO OBTAIN DATA. IF
/ SET TO -1, UNPF WILL USE THE POINTER FROM THE PPEVIOUS CALL.
*2750
UNPF, 0

MEMA @UNPF
ACCM SENDF
MPOM UNPF
MEMA @UNPF
ACCM COUNT
MPOM UNPF
MEMA @UNPF
ACCM UNPFLG
MEMA (17
MPOZ UNPFLG
MEMA (377
ACCM MASK
MPOM UNPF
MEMA @UNPF
EXCT AC19 /IF NEG. THEN DONT INITIALIZE
JMP UNPFX
ACCM POINT
JMP UNPF1

UNPFX, MMOZ UNPFLG /TEST FLAG
JMP UNPFZ

UNPFI, MEMA @POINT
MPOM POINT
MMOZ UNPFLG
JMP UNPFY
JMS @SENDF
MMOMZ COUNT
JMP UNPF1
JMP UNPFE

UNPFY, ACCM TEMP
MEMA (6
ACCM BCOUNT
JMP #+4

UNPF2, MMOMZ COUNT

155

JMP #+2
JMP UNPFE

UNPFZ, M?4OMAZ BCOUNT
JMP #+2
JMP UNPF1
A-MZ (5
JMP UNPF3

UNPF22, MEMA TEMP
MPOZ UNPFLG
LLSH 4
LLSH 4
ACCM TEMP

UNPF21, ANDA MASK
JMS @SENDF
JMP UNPF2

UNPF3, A-MZ (4
JMP UNPF4

UNPF33, MPOZ UNPFLG
ZERZ
JMP UNPF22
MEMA TEMP
RISH 4
ANDA (360
ACCM. TEMP1
JMP UNPF22

(JNPF4, A-MZ (3
JMP UNPF5
MPOZ UNPFEJG
ZERZ
JMP UNPF22
MEMA @POINT
MPOM POINT
LIJSH 4
ACCM TEMP
ANDA (17
A+MA TEMP1
JMS L@SENDF
JMP UNPF2

UNPF5, JMP UNPF22
UNPFE, MPOM UNPF /RETURN
JMP @UNPF

SENDF, 0
COUNT, 0
UNPFLG, 0
POINT, 0
TEMP, 0
BCOUNJT, 0
TEMP1, 0
TEMP2, 0

156

MASK, 0

/
// SUBROUTINE PAKF(RECVF,NBYTES,FLAG,STARTA,NBYTR)
/ REVISION -- DECEMBER 31,1980
/ AUTHOR -- BARRETT,TB
/ PURPOSE -- TRANSFER DATA GIVEN BY RECVF TO CORE.
/ THE DATA MAY BE PACKED IN THE PROCESS. (THIS IS THE INVERSE
/ OF UNPF). USE OF ARGUMENTS IS THE SAME AS IN UNPF EXCEPT-
/ RECVF GETS A DATA BYTE AND GIVES IT TO PACKF VIA ACC. NOTE
/ THAT IT MAY BE NECESSARY FOR RECVF TO CONTROL THE NUMBER OF
/ BYTES TRANSFERRED BY STICKING A 1 IN COUNT1 WHEN THE LAST
/ BYTE HAS BEEN RECEIVED (E.G. AN EOF MARK IS DETECTED)
/ NBYTR - NO. OF BYTES RECEIVED.

PAKF, 0
MEMA @PAKF
ACCM RECVF
MPOM PAKF
MEMA @PAKF
ACCM COUNT1
MPOM COUNTI
MPOM PAKF
MEMA @PAKF
ACCM PAKFLG
MPOM PAKF
MEMA @PAKF
EXCT AC19
JMP PAKFX
ACCM POINT1
MEMA (6
ACCM BCNT
ZERM NBYTES
ZERM WORD

PAKFX, MMOZ PAKFLG
JMP PAKF2

PAKF1, MMOMZ COUNT1
JMP #+2
JMP PAKFF
JMS @RECVF
MPOM NBYTES
ACCM @POINT1
MPOM POINTI
JMP PAKFI

PAKF2, MMOMZ COUNT1
JMP #+2
JMP PAKFE
MMOMZ BCNT
JMP #+3

157

f-I

.. " ' ' HFI" 1 . r I

MEMA (5
ACCM BCNT
JMS (@RECVF
ACCM TMP
MPOM NBYTES
MEMA BCNT
A-MZ (5
JMP PAKF3

PAk<F22, MEMA TMP
* RLSII 10
*A+MM JWORD

JMP IAKF2
PAKF3, A-MZ (4

JMP PAKF4
MEMA TMP
LLSH 4
A +MM WO RD
JMP PAKF2

PAKF4, A-MZ (3
JMP PAKF5
MEMA TMP
RISH 4
A+MA WORD
ACCM @POINT1
MPOM POINTI
MEMA TMP
ANDA (17
RLSH 4
ACCM WORD
JMP PAKF2

PAKF5, A-MZ (2
JMP PAKF6
MEMA TMP
LLSH 10
A+MM WORD
JMP PAKF2

PAKF6, MEMA TMP
A+MA WORD
ACCM @POINTI
MPOM POINTi
ZERM WORD
JMP PAKF2

PAKFE, MMOZ BCNT
ZERZ
JMP #+3
MEMA WORD
ACC'M (@POINTI

PAKFF, MPOM PAKF
MEMA NBYTES

158

Moab

ACCM @PAKF
MPOM PAKF
imp @PAKF /NOTE THAT WE HAVE TO STORE THE LAST UNFILLED WORD

/ WHICH MAY BE LATER OVER WRITT~EN.

RECVF, 0
COUNTi, 0
POINTI, 0
PAKFLG, 0
NBYTES, 0
TMP, 0
WORD, 0
BCNT, 0

159

k ki- '

// SUBROUTINE PKR(FILNAM,NF)
/ REVISION -- JANUARY 22,1981
/ AUTHOR -- BARRETT,TB
/ PURPOSE -- PACK USER GIVEN CHARACTERS INTO A 2-WORD
/ "FILE-NAME". THE 2 MOST SIGNIFICANT BITS
/ OF THE FILENAME ARE 00.
/ ARGUMENTS --
/ FILNAM - ADDRESS OF THE FIRST WORD OF THE FILENAME
/ NF - (RETURNED) THE NO. OF CHARACTERS IN THE FILENAME.
*3240
PKR, 0

MEMA OPKR
ACCM ADDR /STORE THE ADDRESS OF THE FILENAME
ZERM @ADDR

MPOAM PKR
ACCM NF /STORE ADDRESS FOR RETURNING NF
ZERM @NF
MEMA (6
ACCM COUNT
ZERM INDIC /SET CR INDICATOR

PKRI, A-MZ (3

JMP #+3
MPOM ADDR
ZERM @ADDR
MEMZ INDIC /IF INDIC HAS BEEN SET THEN JUST SHIFT
JMP PKR2
JMS @ECHO
A-MZ (215
JMP #+4

ONEM INDIC
ZERM TEMP
JMP PKR2
MPOM @NF

A-MA (240
ACCM TEMP

PKR2, MEMA @ADDR
LLSHI 6
A+MA TEMP
ACCM @ADDR
MMOMAZ COUNT
JMP PKR1
MPOM PKR /INCREMENT FOR RETURN

JMP @PKR
ADDR, 0
NF, 0
INDIC, 0
/
/ EXTERNALS
ECHO, 2257

160

!

_/ SUBROUTINE DEC
/ REVISION -- DECEMBER 30,1980
/ AUTHOR -- BARRETT ,TB
/ PURPOSE -- TRANSFORM A PACKED ASCII HEX STRING TO BINARY AND PACK
/ 5 NIBBLES PER NIC WORD
/ ARGUMENTS -- ALL ARGUMENTS ARE PASSED THROUGH A COMMON AREA
/ WITH THE FOLLOWING VARIABLES IN THE ORDER SHOWN-
/ WPNT - POINTS TO STORAGE LOCATION OF THE LAST WORD
/ STORED. THIS IS INCREMENTED WHENEVER A WORD IS
/ COMPLETFE SO IT SHOULD BE SET ACCORDINGLY
/ ON INITIAL ENTRY.
/ WORD - CONTAINS THE NIBBLES OR PORTIONS THEREOF TO
/ BE STORED AT WPNT+I. IT SHOULD BE SET TO 0 ON
/ INITIAL CALL.
/ WCNT - A COUNTER FOR WORD. WHEN WORD IS EMPTY,WCNT
/ =5, WHEN FULL WCNTS-. WHEN WCNT GOES TO 0, WORD IS
/ STORED AT WPNT+I AND WPNT IS INCREMENTED. SET TO 6
/ AT INITIAL CALL TO DEC.
/ COUNT - THE NUMBER OF NIBBLES+l TO BE PACKED. NOTE THAT COUNT
/ IS DECREMENTED TO 0 BY DEC.
/ BCNT - BYTE COUNTER. SET TO I FOR INITIAL CALL.
/ APNT - POINT TO CURRENT STRING WORD. SET TO 1 LESS THAN THE
/ START OF THE STRING INITIALLY.
/ CHKSUM - NIBBLE VALUES ARE ADDED & STORED IN CHKSUM. SET TO

/ 0 ON EACH CALL TO DEC (USUALLY).
/ NWORD - NO. OF WORDS STORED. (USUALLY SET TO 0 AT EACH CALL.
/ NOTE----
/ IN ORDER TO FORCE A WORD OUT OF DEC, SET WCNT TO COUNT.
/

*3310
DEC, a
START, MMOMZ BCNT

JMP #+7
MEMA (5
ACCM BCNT
MPOM APNT
MEMA @APNT
LASH 1
ACCM TEMP
MMOMZ WCNT
JMP #+10
MEMA (5
ACCM WCNT
MPOM WPNT
MEMA WORD
ACCM @WPNT
MPOM NWORD

ZERM WORD
MMOMZ COUNT

161

JMP #+4
MPOM BCNT
MPOM WCNT
JMP @DEC /NOTE EXIT
MEMA BCNT
A-MZ (3
JMP DECI
MPOM APNT
MEMA @APNT
ACCM TEMPI
RISH 3
A+MA TEMP
JMP DEC2

DECI, A-MZ (2
JMP DEC3
MEMA TEMPI
LASH 5
ACCM TEMP
JMP DEC2

DEC3, MEMA TEMP
DEC2, EXCT AC19

A+MA TRAN
LASH 3
ACCM TEMP

ANDA MASK

ACCM NIBBLE
LLSH 4
A+MM CHKSUM/GET READY FOR NEXT WORD
MEMA TEMP
LASH 5
ACCM TEMP
MEMA (6
ACCM SiiIFl
MEMA WCNT
M-AM SHIFi
MEMA NIBBLE
MMOMZ SHIFi
ZERZ
JMP #+3
RISH 4
JMP #-4
A+MM WORD
JMP START

/SCRATCH STORAGE
TEMP, 0
NIBBLE, 8
TEMPI, 0
SHIF1, 0

162

/ MASKS
TRAN, 220000
MASK, 3600000
/COMMON STORAGE
WPNT, 0
WORD, 0
WCNT, 0
COUNT, 0
BCNT, 0
APNT, 0
CHKSUM, 0
NWORD, 0

163

// SUBROUTINE NIBBIN(VALUE,NNIB,C,BIN)
/ REVISION -- DECEMBER 30,1980
/ AUTHOR -- BARRETT,TB
/ PURPOSE -- CONVERT PACKED BCD OR BCH TO BINARY.
/ ARGUMENTS --

/ VALUE - PACKED BCD OR BCH; MOST SIGNIFICANT NIBBLE
/ AT UPPER ORDER LOCATION IN VALUE;LEFT JUSTIFIED.
/ NNIB - NO.OF 4 BIT NIBBLES TO BE CONVERTED
/ C - OCT 12 IF THIS IS A BCD VALUE
/ OCT 20 IF THIS IS A BCH VALUE
/ BIN - RETURNS BINARY VALUE HERE/

*3470

NIBBIN, 0
MEMA (6
ACCM SHIF
MEMA @NIBBIN
ACCM VALUE
MPOM NIBBIN
ZERM RESULT
MEMAZ @NIBBIN
ZERZ
JMP NIB2
ACCM NNIB
M-AM SHIF
MEMA VALUE
MMOMZ SHIF
ZERZ
JMP #+3
RISH 4
JMP #-4
ACCM VALUE
MPOM NIBBTN
MEMA @NIBBIN
ACCM C
MPOAM NIBBIN
ACCM BIN
MPOM NIBBIN
MEMA VALUE
ONEM MPLCND

NIBI, ANDA (17

TACMQ
MU LT

MPLCND, 0
TMQAC
A+MN RESULT
MMOMZ NNIB
JMP #+2
JMP NIB2

164

* .,
.4

MEMA MPLCND
ACCM #+4
MEMA C
TACMQ

TMQAC
ACCM MPLCND
MEMA VALUE
RISH 4
ACCM VALUE
JMP NIBI

NIB2, MEMA RESULT
ACCM @BIN
JMP @NIBBIN

VALUE, 0
NNIB, 0
C, 0
BIN, 0
RESULT, 0
SHIF, 0

165

// SUBROUTINE TEKHEX(CNT,NBYTE)
/ REVISION -- JANUARY 24,1981
/ AUTHOR -- BARRETT,TB
/ PURPOSE -- DECODES (TO BINARY) A TEKTRONIX HEX FILE AND PUTS

/ THE RESULT IN PACKED FORM STARTING AT LOCATION

/ 100000. THE INPUT FILE IS ASSUMED TO BE IN
/ PACKED FORM STARTING AT 10P000.
/ ARGUMENTS -- CNT - TOTAL NO. OF PACKED WORDS IN THE OUTPUT.

/ NOTE THAT THE LAST PACKED WORD MAY HAVE 0 FILL.
/ ALSO NOTE THAT DEC PACKS WORDS SUCH THAT NIBBLE1
/ OCCUPIES 19-16....,NIBBLE5, 3-0.
/ NBYTE - TOTAL NO. OF BYTES (2 NIBS) STORED.
/ - NOTE THAT THIS SUBROUTINE ASSUMES THAT THE TEK. 8002 AND
/ COMM-STOR ARE CONFIGURED SUCH THAT EACH "LEADING" SLASH IS
/ PREFACED WITH XOF (ASCII 223). ALSO NOTE THAT THERE ARE
/ 17 (21 OCT) SURPLUS CHARS. AFTER THE LAST CR.
/ BE SURE TO USE MX MODE WHEN STORING THE HEX FILE.
*3565
TEKHEX, 0

MEMA TEKHEX
ACCM CNT
ZERM @CNT
MPOMA TEKHEX
ACCM NBYTE
ZERM @NBYTE
MPOM TEKHEX
ONEM BCNT /INITIALIZE DEC
ZERM WORDO
MEMA (6
ACCM WCNTO
MEMA BUFS
A MO A
ACCM APNT
ACCml WNTO

TEK i, MEMA (.13
ACC-M COUNT
IEM A (6
ACCM WCNT
ZERM WORD
MEMA HEADA /ADDRESS OF HEADER START
ACCM WPNT
JMS DEC
MEMA HEAD /CHECK FOR "/"
LLSH 10
ANDA (17
A-MZ (17
ZERZ
JMP TEK2
JMS @CRLF
JMS @UNP

166

ors,.... ,T ' Ii'"' -h " .. "; a

12
1
TEXT % TEKHEX ER%
JMP TEKE / GOTO TEKHEX END

TEK2, MEMA HEAD+l
LLSEI 4
ACCM #+2
JMS NIBBIN
0
2
20
0
MEMA 11-l
A+MM @NBYTE
LASH 1 /*2 FOR TOTAL NO. OF NIBBLES
ACCMZ COUNT
JMP #+2
JMP TEK3 /NORMAL TERMINATION-CHECK FOR WHETHER
THIS WAS LAST FULL BYTE.
MPOM COUNT
MEMA WPNTO
ACCM WPNT
MEMA WORDO
ACCM WORD
MEMA WCNTO
ACCM WCNT
ZERM CHKSUM
ZERM, NWORD
JMS DEC
MEMA CHKSUM
ANDA (377 /THIS MOD 256
ACCM CHKS
MEMA NWORD
A+MM @CNT
MEMA WPNT /STORE STATE FOR NEXT CALL
ACCM WPNTO
MEMA WORD
ACCM WORDO
MEMA WCNT
ACCM WCNTO
MEMA (4 /SET FOR GETTING TRAILER (3 NIBBLES)
ACCM COUNT
MEMA (4
ACCM WCNT
ZERM WORD
MEMA HEADA
ACCM WPNT
JMS DEC
MEMA HEAD

167

LLSH 10
ACCM #+2
JMS NIBBIN
0
2
20
0
MEMA #-I
A-MZ CHKS
JMP #+2
JMP TEKi
JMP @CRLF
JMS @LJNP
16

TEXT %CHECKSUM ER%
JMP TEKE
TKMEMA VJCNTO /POSSIBLE EXTRA WORD TO ADD

A-HZ (6 /IF WCNT IS 6 THE LAST WORD WAS STORED.
JMP #+2
JMP TEKE
MPOM WPNTO
MEMA WORDO
ACCM @WPNTO
MPOM @CNT

TEKE, JMP @TEKHEX
/ SCRATCH STORAGE
WPNTO, 0
WORDO, 0
WCNTO, 0
CNT, 0
HEAD, 0

0 /2 WORD FOR PACKED HEADER/TRAILER
CHKS, 0
NBYTE, 0
/DEFINiITIONS

HEADA, HEAD-i
BUFSI 100000
/EXTERNALS
UNP, 2650
CRLF, 2736

168

aV t

// SUBROUTINE NICFIL(NW,FILNAM)
/ REVISION -- JANUARY 26,1980
/ AUTHOR -- BARRETT,TB
/ PURPOSE -- TRANSFER A CORE "FILE" TO DISK FILE. THE CORE FILE

/ STARTS AT 100000.
/ ARGUMENTS --
/ NW - LENGTH OF THE FILE (WORDS)
/ FILNAM - ADDRESS OF THE NAME TO BE ASSIGNED TO THE FILE.
/

*4010

NICFIL, 0
MEMA @NICFIL
ACCM @OARG2

ACCM NW
ZERM @OARG1
MPOM NICFIL
MEMA @NICFIL
ACCM AFIL
MPOM NICFIL /SET FOR ERROR RETURN

JMS @OPENW
MEMA @OARG2 /MAKE SURE HAVE ENOUGH SPACE
A-MZ NW
EXCT AC19 /IF NEG. JUMP TO ERROR EXIT
JMP ERR
MEMA @OARG1

ACCM IT
JMS @WRITE

IT, 0
NW, 0

1 00000
MEMA NW
ACCM @OARG2
MEMA @AFIL
ACCM #+5
MPOM AFIL
MEMA @AFIL
ACCM #+3
JMS @CLOSE
0
0
JMP NICI

ERR, JMS @UNP
17
1
TEXT % NO FILE SPACE-%
JMP @NICFIL

NICI, MPOM NICFIL
JMP @NICFIL

/ SCRATCH STORAGE

AFIL, 0

169

// SUBROUTINE SEARCH(MNEM,CODE,VALUE,NBYTE,TABLA,FLAG)
/ REVISION -- JANUARY 22,1981
/ AUTHOR -- BARRETT,TB
/ PURPOSE -- SEARCH A TABLE FOR CODE&VALUE&NO. OF BYTES IN THE
/ VALUE (WHERE VALUE IS A SINGLE WORD WITH UP TO
/ 5 NIBBLES) OR INSERT VALUE & NO. OF NIBBLES IN VALUE
/ PARAMETERS --
/ MNEM - 3 LETTER MNEMONIC (PACKED) WHICH IDENTIFIES AN ENTRY
/ CODE - THE CORRESPONDING CODE (CAMERA "SECONDARY ADDRESS")
/ VALUE - DATA WORD ASSOCIATED WITH THE CODE (MAY BE 0)
/ TYPICALLY THIS IS A BCD CODE. FOR EXAMPLE 1203
/ WOULD HAVE NIBBLES 1,2,0,3,0 IN THAT ORDER FOR
/ AN OCTAL WORD = 0220060.
/ NBYTE - NO. OF NIBBLES IN VALUE (MAY BE 0)
/ TABLA - ADDRESS OF THE START OF THE TABLE
/ FLAG - ON ENTRY, FLAG IS USED TO INDICATE WHETHER THIS
/ IS A RETURN (0) OR REPLACE (1) OPERATION. ON
/ SEARCH OPERATIONS, FLAG IS ALSO RETURNED AS 0 FOR
/ A SUCCESSFUL SEARCH AND AS 1 FOR NO-FIND.
/ NOTE ---
/ TABLE HAS THE FORM -
/ MNEMONIC (3 PACKED LETTERS,R-JUSTIFIED)
/ CODE RIGHT JUSTIFIED 8-BIT CODE
/ N-NIBBLES NO. OF NIBBLES IN VALUE
/ VALUE PACKED NIBBLES
/ ETC.
/ THE TABLE SHOULD BE TERMINATED WITH @.
*4070
SEARCH, 0

MEMA @SEARCH
ACCM MNEM
MPOMA SEARCH
ACCM CODE
MPOMA SEARCH
ACCM VALUE
MPOMA SEARCH
ACCM NBYTE
MPOM SEARCH
MEMA @SEARCH
ACCM TABLA
MPOM SEARCH
JMP +5

SEA1, MPOM TABLA
MPOM TABLA
MPOM TABLA
MPOM TABLA
MEMA @TABLA
A-MZ (300
JMP #+2
JMP SEA2 /CANT FIND

170

- .- - -

____w loo

A-MZ MNEM
JMP SEAl
MEMZ @SEARCH
JMP SEA3 /STORE
MPOM TABLA
MEMA @TABLA
ACCM @CODE
MPOM TABLA
MEMA @TABLA
ACCM @NBYTE
MPOM TABLA
MEMA @TABLA
ACCM @VALUJE
JMP SEA4

SEA3, MPOM~ TABLA
MPOM. TABLA
MEMA @NBYTE
ACCM @TABLA
MPOM TABLA
MEMA @VALUE
ACCM @TABLA
JMP SEA2

SEA4, ZERMZ @SEARCH
SEA2, ONEM @SEARCH

MPOM SEARCH
JMP @SEARCH

/SCRATCH STORAGE
MNEM, 0
CODE, 0
NBYTE, 0
TABLA, 0

171

77~

// SUBROUTINE ZERTAB(TABLE)
/ PURPOSE -- ZEROES THE COMMAND TABLE
/ ARGUMENTS -- TABLE - START ADDRESS OF TABLE
*4160

ZERTAB, 0
MEMA (23
ACCM COUNT
MEMA @ZERTA9
ACCM POINT

ZE1, ZERM @POINT
MPOM POINT
MMOMZ COUNT
JMP ZE1
MPOM ZERTAB
JMP @ZERTAB

/ SCRATCH
COUNT, 0
POINT, 0/

/
// FUNCTION MULTP(X)
/ PURPOSE -- MULTIPLIES ACC BY X AND RETURNS RESULT IN ACC (LOWER
/ 20 BITS OF THE RESULT. THE HIGH ORDER BITS ARE PUT
/ IN THE MQ REGISTER.
MULTP, 0

TACMQ /TRANSFER ACC TO MQ REGISTER
MEMA @MULTP
ACCM #+2
MULT
0
ACCM VALUE
TMQAC /TRANSFERS MQ (LOW ORDER) TO ACC
ACCM VALUE1
MEMA VALUE
TACMQ /PUT HIGH ORDER IN MQ
MEMA VALUE1 /LOW ORDER IN ACC FOR RETURN
MPOM MULTP /SET FOR RETURN
JMP @MULTP/

/
// FUNCTION DIVDE(X)
/ PURPOSE -- DIVIDE MQ+ACC BY X AND RETURN THE RESULT IN ACC.
/ RETURN THE REMAINDER IN X. NOTE THAT MO CONTAINS THE HIGH
/ ORDER BITS AND ACC THE LOW ORDER BITS OF THE DIVIDEND.
DIVDE, 0

CLL /CLEAR LINK
EXCT AC19
STL

172

I.4

LASH 1 /LEFT SHIFT DIVIDEND
ACCM VALUE /STORE TEMPORARILY
TMQAC /GET HIGH ORDER BITS
LASH 1
EXCT L
APOA
ACCM VALUEl /STORE TEMPORARILY
MEMA VALUE
TACMQ /LOAD IT INTO MQ
MEMA @DIVDE /GET DIVISOR
ACCM Dl
MEMA VALUE1 /PUT HIGH ORDER IN ACC
DIVD

Dl, 0
RISH 1 /RESTORE THE REMAINDER
ACCM @DIVDE /AND STORE FOR RETURN
TMQAC /QUOTIENT TO ACC
MPOM DIVDE /FOR RETURN
JMP @DIVDE/

// I
/
// SUBROUTINE SENDF
/ PURPOSE - GIVEN A "WORD" TO BE PRINTED IN ACC, SENDF PRINTS THE
/ WORD ACCORDING TO THE FOLLOWING RULE-
/ (1) IF SMODE=0 THEN PRINT DIRECTLY AFTER CONVERTING TO
, NIC ASCII
/ (2) IF SMODE=l THEN CONVERT TO DOUBLE HEX AND PRINT. ALSO COUNT
/ CHARACTERS (OR WORDS) AND AT END OF WCNTO WORDS DO A CR. THE
/ WORD COUNTER COUNTER SHOULD BE SET TO WCNTO INITIALLY.
/ SMODE,WCNT AND WCNT0 CAN BE CONSIDERED IN COMMON DECLARED IN SENDF.
SENDF, 0

MEMZ SMODE
JMP HEXM
A+MA (200
JMS @TYPE
JMP HEXM2

HEXM, ONEM LCNT /SET NIBBLE COUNT TO 2

MPOM LCNT
RLSH 4

HEXM1, ACCM VALUE
MEMA (260
ACCM PREF
MEMA VALUE

ANDA (17
ACCM VALUEl
A-MA (12
EXCT AC19
JMP #+4

173

*1

APOM VALUE1
MEMA (300
ACCM PREP
MEMA VALUE1
A+MA PREP
JMS @TYPE
MEMA VALUE
LLSH 4
MMOMZ LCNT
JMP HEXMI

HEXM2, MMOMZ WCNT
JMP SENDE
MEMA WCNT0
ACCM WCNT
JMS @CRLF

SENDE, JMP @SENDF
/ SCRATCH STORAGE
VALUE, 0
VALUE1, 0
PREF, 0
LCNT, 0
/ COMMON
WCNT, 0
SMODE, 0
WCNT0, 0/

/
// SUBROUTINE GETFIL
/ PURPOSE -- ASKS FOR FILE WANTED AND GETS THE FILE INTO NIC
/ CORE STARTING AT 100000. IF THE FILE IS UNAVAILABLE,
/ AN ERROR MESSAGE IS PRINTED AND THE
/ ERROR EXIT IS TAKEN. (NORMAL EXIT IS 2 BEYOND CALL POINT.)
GETFIL, 0

JMS @UNP
14
0
TEXT % FILE NAME?=%
JMS @PKR
FI LNAM
0
JMS @CR"F
JMS @OPENR

FILNAM, BLOCK 2
MEMA @OARG1
SKIP AC19
JMP GETFi
JMS @UNP /FILE DOES NOT EXIST
24

174
&I

Ii
TEXT % FILE DOES NOT EXIST%
JMP @GETFIL

GETFi, MEMA @OARGI
ACCM ITG
MEMA @OARG2
ACCM SIZE
JMS @READD

ITG, 0
SIZE, 0

MPOM GETFIL
JMP @GETFIL

/
/ SUBROUTINE PAUSE
/ PURPOSE -- VARIABLE PAUSE
PAUSE, 0
MEMA @PAUSE
ACCM COUNT
MMOMZ COUNT

JMP #-1
MPOM PAUSE
JMP @PAUSE

/
/ SUBROUTINE OCT(X)
/ PURPOSE -- PACKS USER GIVEN OCTAL VALUE (UP TO 7 DIGITS) INTO LOCATION
/ X. THE VALUE IS RIGHT JUSTIFIED,ZERO FILL (E.G.1 => 0000001).
OCT, 0

MEMA @OCT
ACCM VALUE
ZERM @VALUE /ZERO FILL THE NUMBER

OCTI, JMS @ECHO /GET NEXT DIGIT
A-MZ (215 /IF CR WE ARE THROUGH
ZERZ
JMP OCTE
A-MA (260 /CONVERT FROM ASCII TO OCTAL

175

*1. , ** - ~T

ACCM VALUE1
MEMA @VALUE
LLSH 3
A+MA VALUE1
ACCM @VALUE /STORE NEW VALUE

JMP OCTI
OCTE, MPOM OCT

JMP @OCT
/
/ EXTERNALS
UNP, 2650
PKR, 3240
CRLF, 2736
OPENR, 2432
READD, 2511
TYPE, 2731
OPENW, 2420
WRITE, 2470
CLOSE, 2451
ECHO, 2257
/ DEFINITIONS
OARGI, 7770

OARG2, 7771
/
/
$

176 I

APPENDIX D

The Tektonix "WHEX" File

The source code for the CTL was developed on a Tektronix 8002A uP
Laboratory using assembly language and Zilog mnemonics. The pro-
gram was then assembled and stored as a "loae" file. The load
file was then loaded into memory and finally stored as a Hexadeci-
mal file using the Tektronix WHEX command. In this form the file
can be transferred, for example, to the Sykes Comm-Stor. This
appendix shows the structure of the WHEX file and the configura-
tion of Comm-Stor which was used when receiving the WHEX file.

I. Tektronix Hexadecimal File Structure

General Fo:mat

(Hae) Location Byte First Daa Second CR
Counter Count Checksum Checksum (EOL)

Format Description

No. of ASCII
Name Characters Content Description

Header 1 Always a slash ().

Location Counter 4 Four hexadecimal digits representing the starting memory
location of the block.

Byte Count 2 Two-digit hexadecimal value %pecifying the nurnbei of data
bytes in the data fi'ld of the block.

First Checksum 2 Two-digit hexadecimal number represeuiting the hiadecimal
sum of the valies of the six digits that make up the location
counter and the byte count.

Data 2"N N data bytes, each represented as two hexad-cirnal diqits. Each
hex digit is coded as an ASCII character 0-9 or A F T;,ie car
be a maximum of thirty data bytes (sixty heK3decimd
digits) per block.

Second Checksum 2 Two-digit hexadecimal number representing the sum, modulo
256, of the hexadecimal values of the digits that make up the
N data bytes.

CR 1 Always a carriage return (CR) indicating the end of the block.

177

HI. Sykes Comm-Stor Configuration for communications with the
Tektronix 8002 Development Laboratory. (Comm-Stor should be
in the MX mode while receiving a WHEX file.)

E~t~r :F IPE CIFFFPCTEF ['PmI
~$TV ':FiLD LINE FEED FFT"ER :l FF lAE RETh'FT1r ;-KEc~
:KEFET HAFAC1_TER k[LFJ1

* F'FFICE. FETLF-Rh FHARACTEF C F:F ,-"TEt'1 t:1E-;';AGES: 1 E R "
iNP FEEL CHPAFF'.TEF FCr : '_TEFM NP:ESAGE {[L

rE't;F TE.::,T cHRFFj.' TEF* E1.
* Tp~4p~i~ "~iD'iF FF41-Tl CHA~RHCHRFC.TEFi:

FE; 7T C:AF'.TF lt
FF1t:-t I HAFT F 'F i UEA 11 CHSAC .TEF
F1 END TF HIFFF H- '- I'FIO E CiRC' TD EHIE TF

S2, "E': E C~"HRAFiTE IT: ::rF TFI([S
TA7: PTRi E~ r- HRC HP FOTE)':E TI: 'C'riFI EF , i

HtOLPC" i.AFFCTE F SFCAP CEr.1FLTE TrIriL: [-. fEt

-.i TFP EL'riEF ICRPL F-FC11' 1ESSPEIC ~ rUi
rr 't L FD C" 1CB;5FRCER TO 1CE1TE" ' 1.i:
iTFIT :-EL," CHFiFCTEF: 1 EC:P]FTE~ IIF]

TFI'!" LELFiY i:HFIFA':EF i--i-tiIEF.."E~. I CAL'

!-. TFI T HUiEA'CHHFHI EF Pg. .EISES N.

ELA 'T DELPT':F CHR E #1

4 I'i U ELP,"i iFI-j ATEF #4L-: ECFP

_ELF', FF4.C1CF 1 CI
FULT EF CI-ARCTE CEF4l (I L]

r~IEF F LiE C ri FHa

-.I:iil HF , HLFTE #4 HAACEFRI.t]

I"ni':'FE CI'.LL I HiHTEFE FF.1 TI I L C
T~F HL HULL IHFITEF 'I 'LL

"LII-r1A CRFELIHR IT R I ':I'
41 JIPEFtY FT 'HP I AE I.NE

EIT IPHTH, LITE EACH P'

rFINFFYA TEFn1IrIL DRTH
.1 T.j -- IFH r I E 1 tF 0-1 r inElI

A H(

1: HHLF riLE:. ' E~ N.
t r_ -"-D''E- NCT FF'L', T0 FL'LL-DUL'F' MOEM,_::

".*DOE r1'E-NI T RPF'L'1, TOD FULL-PUFPLE:, till-r~"
1-4: *rE-NO T P.F'FL'-i- TO FULL-lUFLE> : I:t'B,
15: ;*I 'E ' 0T F'FLY- TO FULL-DUiLE' !'P1OIH

"'.DOPSI NOT P~iFFLt TL' FULL-rIFLE~vt!lE-_,,
IR4HT PF'EF EC' L FlF' FFOrIFT OR AFFTERF.' T:. FOPF -

t: iHHFHITEF ' T rAITIAiTE WAI ~pir '~:
P-' WRIT FOR F ICMriT EEFOE STA P TI tIC] RA~rEriIEcoi

41. FF1 ifT" OP "ACKNOWt,:,LEDGllE" H--HFH .TEF'
1 "FETFHHC-1 I T NE' HOE"l CHFIFHTEF IUJI'

I uli'iFE NU I LL'" 1-HICTEF FROM MCID'1 TEFF -i 'El
HCiDr~", ILL IHAFRCTER (PHI LU

.14 1,--TTI:I-LHErl 'M1E::'HOG ECHIEt' CliEE
.:'IP:_TITlIlTE tHOEEtil FAF'I Ti-, EF'FORF. iWITH EPPiiF ' r1TF:CL' 403

F HE': , FO-PF !1Or FF'FR'1 I Hl 'F"'?' v
Ir ACT i:TTy' T IMEOULT fIHA':T'.E
rig Ft1FL riDEr' rFrTF

F *I ~r1 IHhE .E(.(Eti .1
E iR'R I T S F :-:TH:IT E II NG~i F'F'iFT'

-LMF 7OE rHT_ F t'f
zI1-4 T E"''DEl DATA i'lE . I~rE

UN~BEF, CiF DTII LIT':_:,
ItHi:LUDIfil'; Fl' ..Er' !:T ::: 'F i IF Arf

~~: FF~i1IEF £ TlTALLEL D i

FI-lF'1 TY' E' IErj-- 'pp 4l':I4E I E'. 'Hi
r-IMIIFEF' 'IF LATI- F ITS E>:-:CLI 11H, PFFIT' HArD

Tr4LLINGH rT El P IT, 'IF P[r i r-1 f7

FF I~TERHTFF E CLUHTF'I:L i, THUIIIRi
FFl4ES ' FIT&F~' ZIIE"; E'IfE OE~4"'w:

DOE PI TEF PPIlrEDT E~R EF' I:IFi:, FT'lH
:.* 1-10 --PFITEF FFt-IE IE Hi PEF HETiF TO 'Ei l

ES. F'Fr TEF TI CI TH 1 FE I IT' FEED " I l FEHEHIP FEIEL14

Ci: IHs~uE TAEII TER H IT HTIC" IH':FPEr1TiV; F ELI
1. HFt'F,:TEF TO' EFIFT E H JnEFH :TH O

'P: IHAFRCITEF. TC1 Eii FHTEF I Tfl1HHI "r PTTFEMEH TPr' rEFI'EL
1 rIFE'TEPF 7 C.' 'rIF FE' N.FI'G HT4I PHI! ':-''TE,.~- +'

C4 "rA C T I:E HTO~ TFf;MH FFIF'; El' FnIiH IC

DI'T0 r'n-,' D Hi'FCE PC TE-IUt OF r A lrE ni 1

ELEN T LfIYRE" CHFFI I:ERFR 1%:Tt~'i 1

lj::EL ESPH To FlUE " :HF''.tE' '' G
'1~~1 ''-H II I"irDi" ;:,inrllr .

F;"- E HI i,1 A i- F'F' ITE '7TEP"-A PillRU MFT

9:: FSELECT TEIPP1 I HA" I':MnAACE 'PT:'1
ES: : SFl:ELE T''RP I:1 CHrni'F4r' II

179

M:FlC.H': rIDrE'' CCMtM1Fb 1. EM)
-.C "IE:C' E1 .IT" COMMNDri e,

''7, I ril':LUDE ritIDEl I :01INFiriu ' I P1 Ii
:-4: "ItiE: l E PliDIE C-IT" c':rIr1RNI, 1.D.:

:15 ''L.'JAr' FILTErN' I' 'Nl' F':M AN cii i Ir LEE-'
"LORDFI IITIHL (.1HLkE' ':.iir1TAH1 .LI I

rjcri t-IAITOP r" IE E'-:IT'' com:'rfiirt
" P I NT1 I E iF~' i'M rr l:

1 . FE' ElR~i 'IE C-F'" 1u7riN~m I P10
LF 'FE':E I'.. FiHTC'HA I'.':ri~Frt RJFR

"PECEI'.JE HIrir Ar-Iri CCMM I "i

' 'Ehnt' CU TA~i__"_c'liirr

L10: E NlT DFIRCTi VINS FHLLE MMENlD
01F TC' LIN: E ADnFE EFMAPA D

l':E1ENTF IHFi TOE" TFI1MN iEIr'ITEP

14 ',lTAN ' MiD-iit COMFHN E:
H'C4 ' RIEFLE CrlrlMrit t WE

1 Er IT' IFT 11 j ~ I~r t ' 'RLE - f YE' Ii
Z r, LT' AF LE iT"' tlIl~l =

-14 E:DITLIF ILLAN CHuRAC~rTE I 'I
ErC I T l M171) F LE" 'AMM N '.) i~i i ' IL

* :_ EliTI:F F ELE" C':'ririArC I.A1

7:El I TCP AFEND1i H ':IMrlAr it TA
ED I £Yi.L!rIi ''HPIABLE" FIELDN [(D)

17 F ED I TCIF TN EFN" mPH::; N 'H (H='FELj [T:
-~~ 1::' '4FL T" r I i 'F0

E Fr 1 i TC E FIL ;LF~'1 il I IC2
-I "L. Fr, ' TiE F ILL I ri -N R-1 F"ri F i' l T ti I

2 H:r: i iP"F E F AE " I- E *l~hi i F"*

HrPF E T;- DHli TFCLE U IFtAIR H:#FL i I>, 'Elni'ECJI
41 EF TH- fINLE TE t' '--- NF4- ':'

F IF F--. 1.~I 0 TTT I i~tET1

HIE I- L LO -

APPENDIX E

Using the CTL with the Hewlet-Packard 9825A Calculator

As mentioned in the body of this report, the CTL "operating sys-
tem" is designed to allow the CTL to partake in data transfers
only if it is the Controller-in-charge of the tas. It will
"wake-up" in this state if the SYC-switch is placed in the on
position prior to power-on or reset. However, it is also de-
signed to have control transferred to it from another Controller,
provided the SYC-switch is placed in the off position. (It will
remain in control until reset.) This transfer of control can be
done from an HP 9825A Calculator using the program statement

pct 701

where 701 is the select code (7) of the 98024A Interface Module
and the CTL device address (01). This assume, of course, that
the CTL address switches have been set for address 1.

The following annotated listing illustrates 9825A code which can
be used to service the Hamamatsu camera while the Calculator is
Controller-in-charge (i.e., prior to sending the pct command).

(a) serial poll

if bit (7,rds(7))=0 ; goto +0 (wait for SRQ)
rds (702) -> A (get status byte)

(b) set camera "input" format

wti 0,7 (specifies that select code 7 is impli-
cit in all succeeding wti operations)

wtb 70202,49 (send ASCII 1 (decimal 49) to camera
with secondary address 02)

wti 7,144 (write to register 7, binary 10010000.
This causes EOI to be sent with the next
data byte.)

wtb 731,13 (send CR (decimal 13) with EOI)
wti 7,128 (write to register 7, binary 10000000.

This clears EOI)

(c) read camera video data (each pixel consists of 4 ASCII
characters - 3 numerals and 1 space)

dim F$1600,41
for J-1 to 600; red 702, F$[J)
fmt f~xc4
dsp J, F$[J; wait 50

181

S .*

MISSION
Of

Rome Air Development Center
RAVC ptn and execwteA taeawch, devetopment, teht and
6 etected acqui..ition ptoguwmn in 6uppor~t oj Commnd, ConL'w.t
CornunicationA and In-teUtigence (C31) activitie. Technica2
and engineeLing 6uppott within aLetu oj technical competence
AA pk'ovided to ESV ?4ogwam 066ieA (P061 and otheA' ESV
etement6. The p~incipat technLieat mi6,Zon ai~eat atecommunication6, etectAomagnet4c guia4nce and elontAot, &6uA-
vetance o6 g'ound atnd ae'Lo6pace object6, inteUtigence data
cottection aznd handting, in6oAmation 6.6t~em technotogy,
lono~phep.ic p~opago.&on, .6otid 6tate 6cienceA, miWv~e
phyqic6 and eteet~onic %etiabiti4y, maintainabitity a~nd
compatibi..&tg.

Hanscom AFB, Mass. 01731

